E. Lopez, Eleonora Chiarantano, Eleonora Grassucci, D. Comminiello
{"title":"基于脑电图和外周生理信号的超复杂多模态情绪识别","authors":"E. Lopez, Eleonora Chiarantano, Eleonora Grassucci, D. Comminiello","doi":"10.1109/ICASSPW59220.2023.10193329","DOIUrl":null,"url":null,"abstract":"Multimodal emotion recognition from physiological signals is receiving an increasing amount of attention due to the impossibility to control them at will unlike behavioral reactions, thus providing more reliable information. Existing deep learning-based methods still rely on extracted handcrafted features, not taking full advantage of the learning ability of neural networks, and often adopt a single-modality approach, while human emotions are inherently expressed in a multimodal way. In this paper, we propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications. Indeed, by operating in a hypercomplex domain the operations follow algebraic rules which allow to model latent relations among learned feature dimensions for a more effective fusion step. We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI surpassing a multimodal state-of-the-art network. The code of our work is freely available at https://github.com/ispamm/MHyEEG.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypercomplex Multimodal Emotion Recognition from EEG and Peripheral Physiological Signals\",\"authors\":\"E. Lopez, Eleonora Chiarantano, Eleonora Grassucci, D. Comminiello\",\"doi\":\"10.1109/ICASSPW59220.2023.10193329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal emotion recognition from physiological signals is receiving an increasing amount of attention due to the impossibility to control them at will unlike behavioral reactions, thus providing more reliable information. Existing deep learning-based methods still rely on extracted handcrafted features, not taking full advantage of the learning ability of neural networks, and often adopt a single-modality approach, while human emotions are inherently expressed in a multimodal way. In this paper, we propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications. Indeed, by operating in a hypercomplex domain the operations follow algebraic rules which allow to model latent relations among learned feature dimensions for a more effective fusion step. We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI surpassing a multimodal state-of-the-art network. The code of our work is freely available at https://github.com/ispamm/MHyEEG.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hypercomplex Multimodal Emotion Recognition from EEG and Peripheral Physiological Signals
Multimodal emotion recognition from physiological signals is receiving an increasing amount of attention due to the impossibility to control them at will unlike behavioral reactions, thus providing more reliable information. Existing deep learning-based methods still rely on extracted handcrafted features, not taking full advantage of the learning ability of neural networks, and often adopt a single-modality approach, while human emotions are inherently expressed in a multimodal way. In this paper, we propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications. Indeed, by operating in a hypercomplex domain the operations follow algebraic rules which allow to model latent relations among learned feature dimensions for a more effective fusion step. We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI surpassing a multimodal state-of-the-art network. The code of our work is freely available at https://github.com/ispamm/MHyEEG.