Mohammed Senoussaoui, P. Kenny, P. Dumouchel, Themos Stafylakis
{"title":"基于有效迭代均值移位的余弦不相似度多录音说话人聚类","authors":"Mohammed Senoussaoui, P. Kenny, P. Dumouchel, Themos Stafylakis","doi":"10.1109/ICASSP.2013.6639164","DOIUrl":null,"url":null,"abstract":"Speaker clustering is an important task in many applications such as Speaker Diarization as well as Speech Recognition. Speaker clustering can be done within a single multi-speaker recording (Diarization) or for a set of different recordings. In this work we are interested by the former case and we propose a simple iterative Mean Shift (MS) algorithm to deal with this problem. Traditionally, MS algorithm is based on Euclidean distance. We propose to use the Cosine distance in order to build a new version of MS algorithm. We report results as measured by speaker and cluster impurities on NIST SRE 2008 datasets.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Efficient iterative mean shift based cosine dissimilarity for multi-recording speaker clustering\",\"authors\":\"Mohammed Senoussaoui, P. Kenny, P. Dumouchel, Themos Stafylakis\",\"doi\":\"10.1109/ICASSP.2013.6639164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker clustering is an important task in many applications such as Speaker Diarization as well as Speech Recognition. Speaker clustering can be done within a single multi-speaker recording (Diarization) or for a set of different recordings. In this work we are interested by the former case and we propose a simple iterative Mean Shift (MS) algorithm to deal with this problem. Traditionally, MS algorithm is based on Euclidean distance. We propose to use the Cosine distance in order to build a new version of MS algorithm. We report results as measured by speaker and cluster impurities on NIST SRE 2008 datasets.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6639164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6639164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient iterative mean shift based cosine dissimilarity for multi-recording speaker clustering
Speaker clustering is an important task in many applications such as Speaker Diarization as well as Speech Recognition. Speaker clustering can be done within a single multi-speaker recording (Diarization) or for a set of different recordings. In this work we are interested by the former case and we propose a simple iterative Mean Shift (MS) algorithm to deal with this problem. Traditionally, MS algorithm is based on Euclidean distance. We propose to use the Cosine distance in order to build a new version of MS algorithm. We report results as measured by speaker and cluster impurities on NIST SRE 2008 datasets.