{"title":"粘塑性材料σ˙= E (ε(u˙),θ) + F(σ, ε(u), χ, θ)准静态过程的单调性方法","authors":"F. Messelmi, A. Merouani","doi":"10.12816/0006171","DOIUrl":null,"url":null,"abstract":"In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Monotonicity Method in Quasistatic Processes for Viscoplastic Materials of the from σ˙ = E ( ε(u˙ ), θ) + F(σ, ε(u), χ, θ )\",\"authors\":\"F. Messelmi, A. Merouani\",\"doi\":\"10.12816/0006171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0006171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0006171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Monotonicity Method in Quasistatic Processes for Viscoplastic Materials of the from σ˙ = E ( ε(u˙ ), θ) + F(σ, ε(u), χ, θ )
In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.