粘塑性材料σ˙= E (ε(u˙),θ) + F(σ, ε(u), χ, θ)准静态过程的单调性方法

F. Messelmi, A. Merouani
{"title":"粘塑性材料σ˙= E (ε(u˙),θ) + F(σ, ε(u), χ, θ)准静态过程的单调性方法","authors":"F. Messelmi, A. Merouani","doi":"10.12816/0006171","DOIUrl":null,"url":null,"abstract":"In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Monotonicity Method in Quasistatic Processes for Viscoplastic Materials of the from σ˙ = E ( ε(u˙ ), θ) + F(σ, ε(u), χ, θ )\",\"authors\":\"F. Messelmi, A. Merouani\",\"doi\":\"10.12816/0006171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0006171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0006171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了具有两个参数的半线性速率型粘塑性模型的准静态问题;可以解释为绝对温度或内部状态变量。利用单调参数和CauchyLipschitz技术证明了该解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monotonicity Method in Quasistatic Processes for Viscoplastic Materials of the from σ˙ = E ( ε(u˙ ), θ) + F(σ, ε(u), χ, θ )
In this paper, we study a quasistatic problem for semilinear rate-type viscoplastic models with two parameters ; may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a CauchyLipschitz technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信