使用级联多分类器检测拒绝服务

A. Dhingra, M. Sachdeva
{"title":"使用级联多分类器检测拒绝服务","authors":"A. Dhingra, M. Sachdeva","doi":"10.1504/ijcse.2021.10039984","DOIUrl":null,"url":null,"abstract":"The paper proposes a cascaded multi-classifier two-phase intrusion detection (TP-ID) approach that can be trained to monitor incoming traffic for any suspicious data. It addresses the issue of efficient detection of intrusion in traffic and further classifies the suspicious traffic as a DDoS attack or flash event. Features portraying the behaviour of normal, DDoS attack, and flash event are extracted from historical data obtained after merging CAIDA'07, SlowDoS2016, CIC-IDS-2017, and WorldCup 1998 benchmark datasets available online along with the commercial dataset for e-shopping assistant website. Information gain is applied to rank and select the most relevant features. TP-ID applies supervised learning algorithms in the two phases. Each phase tests the set of classifiers, the best of which is chosen for building a model. The performance of the system is evaluated using the detection rate, false-positive rate, mean absolute percentage error, and classification rate. The proposed approach classifies the traffic anomalies with a 99% detection rate, 0.43% FPR, and 99.51% classification rate.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of denial of service using a cascaded multi-classifier\",\"authors\":\"A. Dhingra, M. Sachdeva\",\"doi\":\"10.1504/ijcse.2021.10039984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a cascaded multi-classifier two-phase intrusion detection (TP-ID) approach that can be trained to monitor incoming traffic for any suspicious data. It addresses the issue of efficient detection of intrusion in traffic and further classifies the suspicious traffic as a DDoS attack or flash event. Features portraying the behaviour of normal, DDoS attack, and flash event are extracted from historical data obtained after merging CAIDA'07, SlowDoS2016, CIC-IDS-2017, and WorldCup 1998 benchmark datasets available online along with the commercial dataset for e-shopping assistant website. Information gain is applied to rank and select the most relevant features. TP-ID applies supervised learning algorithms in the two phases. Each phase tests the set of classifiers, the best of which is chosen for building a model. The performance of the system is evaluated using the detection rate, false-positive rate, mean absolute percentage error, and classification rate. The proposed approach classifies the traffic anomalies with a 99% detection rate, 0.43% FPR, and 99.51% classification rate.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2021.10039984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2021.10039984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种级联多分类器两阶段入侵检测(TP-ID)方法,该方法可以训练来监控传入流量中的任何可疑数据。它解决了有效检测流量入侵的问题,并进一步将可疑流量分类为DDoS攻击或flash事件。从CAIDA'07, SlowDoS2016, CIC-IDS-2017和世界杯1998年在线基准数据集以及电子购物助理网站的商业数据集合并后获得的历史数据中提取了描述正常,DDoS攻击和flash事件行为的特征。信息增益应用于排序和选择最相关的特征。TP-ID在这两个阶段应用了监督学习算法。每个阶段测试一组分类器,选择其中最好的分类器来构建模型。使用检出率、假阳性率、平均绝对错误率和分类率来评估系统的性能。该方法对流量异常的检测率为99%,FPR为0.43%,分类率为99.51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of denial of service using a cascaded multi-classifier
The paper proposes a cascaded multi-classifier two-phase intrusion detection (TP-ID) approach that can be trained to monitor incoming traffic for any suspicious data. It addresses the issue of efficient detection of intrusion in traffic and further classifies the suspicious traffic as a DDoS attack or flash event. Features portraying the behaviour of normal, DDoS attack, and flash event are extracted from historical data obtained after merging CAIDA'07, SlowDoS2016, CIC-IDS-2017, and WorldCup 1998 benchmark datasets available online along with the commercial dataset for e-shopping assistant website. Information gain is applied to rank and select the most relevant features. TP-ID applies supervised learning algorithms in the two phases. Each phase tests the set of classifiers, the best of which is chosen for building a model. The performance of the system is evaluated using the detection rate, false-positive rate, mean absolute percentage error, and classification rate. The proposed approach classifies the traffic anomalies with a 99% detection rate, 0.43% FPR, and 99.51% classification rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信