H. Nguyen, Hawke Suen, B. Poudel, Z. Qu, Mohsan Uddin Ahmad, P. Kwon, A. Benard, Haseung Chung
{"title":"从金属悬浮液光聚合到海恩斯214合金高温实用经济增材制造","authors":"H. Nguyen, Hawke Suen, B. Poudel, Z. Qu, Mohsan Uddin Ahmad, P. Kwon, A. Benard, Haseung Chung","doi":"10.1115/iam2022-93984","DOIUrl":null,"url":null,"abstract":"\n Haynes 214 high temperature heat exchanger assembly with enclosed heat flow channels and internal fin structures was successfully fabricated using our scalable and expeditious additive manufacturing (SEAM) process, a new metal additive manufacturing (AM) technology developed at Michigan State University (MSU). Three dimensional green objects can be fabricated by selectively photopolymerizing Haynes 214 metal suspension on a powder bed system in a layer-by-layer fashion. An innovative strategy to attain a complete binder removal and high density as well as dimensional accuracy were developed and employed to achieve final metal parts with relative density above 99.5% and no geometrical distortion.","PeriodicalId":184278,"journal":{"name":"2022 International Additive Manufacturing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From Photopolymerization of Metal Suspension to Practical and Economical Additive Manufacturing of Haynes 214 Alloy for High Temperature Application\",\"authors\":\"H. Nguyen, Hawke Suen, B. Poudel, Z. Qu, Mohsan Uddin Ahmad, P. Kwon, A. Benard, Haseung Chung\",\"doi\":\"10.1115/iam2022-93984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Haynes 214 high temperature heat exchanger assembly with enclosed heat flow channels and internal fin structures was successfully fabricated using our scalable and expeditious additive manufacturing (SEAM) process, a new metal additive manufacturing (AM) technology developed at Michigan State University (MSU). Three dimensional green objects can be fabricated by selectively photopolymerizing Haynes 214 metal suspension on a powder bed system in a layer-by-layer fashion. An innovative strategy to attain a complete binder removal and high density as well as dimensional accuracy were developed and employed to achieve final metal parts with relative density above 99.5% and no geometrical distortion.\",\"PeriodicalId\":184278,\"journal\":{\"name\":\"2022 International Additive Manufacturing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Additive Manufacturing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/iam2022-93984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Additive Manufacturing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iam2022-93984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Photopolymerization of Metal Suspension to Practical and Economical Additive Manufacturing of Haynes 214 Alloy for High Temperature Application
Haynes 214 high temperature heat exchanger assembly with enclosed heat flow channels and internal fin structures was successfully fabricated using our scalable and expeditious additive manufacturing (SEAM) process, a new metal additive manufacturing (AM) technology developed at Michigan State University (MSU). Three dimensional green objects can be fabricated by selectively photopolymerizing Haynes 214 metal suspension on a powder bed system in a layer-by-layer fashion. An innovative strategy to attain a complete binder removal and high density as well as dimensional accuracy were developed and employed to achieve final metal parts with relative density above 99.5% and no geometrical distortion.