基于前臂表面肌电反馈的手势识别系统设计

Wei Zhuang, Yi Zhan, Yue Han, Jian Su, Chunming Gao, Dan Yang
{"title":"基于前臂表面肌电反馈的手势识别系统设计","authors":"Wei Zhuang, Yi Zhan, Yue Han, Jian Su, Chunming Gao, Dan Yang","doi":"10.1504/ijes.2020.10029453","DOIUrl":null,"url":null,"abstract":"This paper presents a study of using surface electromyography (SEMG) for hand gesture recognitions. A SEMG acquisition system is discussed in this paper. The characteristics of SEMG are introduced and the transformation characteristics are analysed as well. Then the selected gestures and the location for the SEMG sensor are determined. The process of pattern recognition and the reason of selecting SVM classifier are presented in detail, and the kernel function selection of SVM is discussed. Three optimisation methods of parameters are compared using the cross-validation method. Finally, the parameters obtained by the genetic algorithm are used to test the model and the recognition performance.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a hand gesture recognition system based on forearm surface electromyography feedback\",\"authors\":\"Wei Zhuang, Yi Zhan, Yue Han, Jian Su, Chunming Gao, Dan Yang\",\"doi\":\"10.1504/ijes.2020.10029453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of using surface electromyography (SEMG) for hand gesture recognitions. A SEMG acquisition system is discussed in this paper. The characteristics of SEMG are introduced and the transformation characteristics are analysed as well. Then the selected gestures and the location for the SEMG sensor are determined. The process of pattern recognition and the reason of selecting SVM classifier are presented in detail, and the kernel function selection of SVM is discussed. Three optimisation methods of parameters are compared using the cross-validation method. Finally, the parameters obtained by the genetic algorithm are used to test the model and the recognition performance.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10029453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10029453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用表面肌电图(SEMG)进行手势识别的方法。本文讨论了一种表面肌电信号采集系统。介绍了表面肌电信号的特征,分析了表面肌电信号的变换特征。然后确定所选择的手势和表面肌电信号传感器的位置。详细介绍了模式识别的过程和选择支持向量机分类器的原因,并讨论了支持向量机的核函数选择。采用交叉验证法对三种参数优化方法进行了比较。最后,利用遗传算法得到的参数对模型和识别性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a hand gesture recognition system based on forearm surface electromyography feedback
This paper presents a study of using surface electromyography (SEMG) for hand gesture recognitions. A SEMG acquisition system is discussed in this paper. The characteristics of SEMG are introduced and the transformation characteristics are analysed as well. Then the selected gestures and the location for the SEMG sensor are determined. The process of pattern recognition and the reason of selecting SVM classifier are presented in detail, and the kernel function selection of SVM is discussed. Three optimisation methods of parameters are compared using the cross-validation method. Finally, the parameters obtained by the genetic algorithm are used to test the model and the recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信