{"title":"基于电润湿的集成微流体系统的高精密电化学分析系统","authors":"W. Satoh, H. Yokomaku, H. Hosono, H. Suzuki","doi":"10.1109/ICSENS.2007.355794","DOIUrl":null,"url":null,"abstract":"An integrated device which can conduct timely transport of a sample solution and analyze its components was constructed. The transport of solutions was based on capillary action on hydrophilic glass areas and the control by valves which operate based on electrowetting. Electrochemical sensors including glucose, lactate, GOT, GPT, pH, ammonia, urea, and creatinine were integrated. Sensors for the former four are amperometric whereas the detection of the latter four are based on potentiometry. The ammonia, urea, and creatinine sensors had an air gap structure to realize a fast response. The sensors for GOT and GPT had a freeze-dried substrate matrix to realize rapid mixing. The sample solution was transported to required sensing sites at desired times. The integrated sensors showed distinct responses upon the introduction of a sample solution. Linear relationships were observed between the output signals and the concentration or the logarithm of the concentration of the analytes.","PeriodicalId":233838,"journal":{"name":"2006 5th IEEE Conference on Sensors","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Sophisticated Electrochemical Analysis System with an Integrated Microfluidic System Based on Electrowetting\",\"authors\":\"W. Satoh, H. Yokomaku, H. Hosono, H. Suzuki\",\"doi\":\"10.1109/ICSENS.2007.355794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated device which can conduct timely transport of a sample solution and analyze its components was constructed. The transport of solutions was based on capillary action on hydrophilic glass areas and the control by valves which operate based on electrowetting. Electrochemical sensors including glucose, lactate, GOT, GPT, pH, ammonia, urea, and creatinine were integrated. Sensors for the former four are amperometric whereas the detection of the latter four are based on potentiometry. The ammonia, urea, and creatinine sensors had an air gap structure to realize a fast response. The sensors for GOT and GPT had a freeze-dried substrate matrix to realize rapid mixing. The sample solution was transported to required sensing sites at desired times. The integrated sensors showed distinct responses upon the introduction of a sample solution. Linear relationships were observed between the output signals and the concentration or the logarithm of the concentration of the analytes.\",\"PeriodicalId\":233838,\"journal\":{\"name\":\"2006 5th IEEE Conference on Sensors\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th IEEE Conference on Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2007.355794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th IEEE Conference on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2007.355794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly Sophisticated Electrochemical Analysis System with an Integrated Microfluidic System Based on Electrowetting
An integrated device which can conduct timely transport of a sample solution and analyze its components was constructed. The transport of solutions was based on capillary action on hydrophilic glass areas and the control by valves which operate based on electrowetting. Electrochemical sensors including glucose, lactate, GOT, GPT, pH, ammonia, urea, and creatinine were integrated. Sensors for the former four are amperometric whereas the detection of the latter four are based on potentiometry. The ammonia, urea, and creatinine sensors had an air gap structure to realize a fast response. The sensors for GOT and GPT had a freeze-dried substrate matrix to realize rapid mixing. The sample solution was transported to required sensing sites at desired times. The integrated sensors showed distinct responses upon the introduction of a sample solution. Linear relationships were observed between the output signals and the concentration or the logarithm of the concentration of the analytes.