基于相关系数的k -均值聚类的荧光显微镜细胞核水平集分割

A. Gharipour, Alan Wee-Chung Liew
{"title":"基于相关系数的k -均值聚类的荧光显微镜细胞核水平集分割","authors":"A. Gharipour, Alan Wee-Chung Liew","doi":"10.1109/DICTA.2015.7371279","DOIUrl":null,"url":null,"abstract":"Fluorescence microscopy image segmentation is a challenging task in fluorescence microscopy image analysis and high-throughput applications such as protein expression quantification and cell function investigation. In this paper, a novel local level set segmentation algorithm in a variational level set formulation via a correntropy-based k-means clustering (LLCK) is introduced for fluorescence microscopy cell image segmentation. The performance of the proposed method is evaluated using a large number of fluorescence microscopy images. A quantitative comparison is also performed with some state-of-the-art segmentation approaches.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Level Set Based Segmentation of Cell Nucleus in Fluorescence Microscopy Images Using Correntropy-Based K-Means Clustering\",\"authors\":\"A. Gharipour, Alan Wee-Chung Liew\",\"doi\":\"10.1109/DICTA.2015.7371279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence microscopy image segmentation is a challenging task in fluorescence microscopy image analysis and high-throughput applications such as protein expression quantification and cell function investigation. In this paper, a novel local level set segmentation algorithm in a variational level set formulation via a correntropy-based k-means clustering (LLCK) is introduced for fluorescence microscopy cell image segmentation. The performance of the proposed method is evaluated using a large number of fluorescence microscopy images. A quantitative comparison is also performed with some state-of-the-art segmentation approaches.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在荧光显微镜图像分析和高通量应用中,如蛋白质表达定量和细胞功能研究,图像分割是一项具有挑战性的任务。本文提出了一种基于相关熵的k均值聚类(LLCK)的变分水平集局部水平集分割算法,用于荧光显微镜细胞图像的分割。所提出的方法的性能进行了评估,使用大量的荧光显微镜图像。定量比较也执行了一些最先进的分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Level Set Based Segmentation of Cell Nucleus in Fluorescence Microscopy Images Using Correntropy-Based K-Means Clustering
Fluorescence microscopy image segmentation is a challenging task in fluorescence microscopy image analysis and high-throughput applications such as protein expression quantification and cell function investigation. In this paper, a novel local level set segmentation algorithm in a variational level set formulation via a correntropy-based k-means clustering (LLCK) is introduced for fluorescence microscopy cell image segmentation. The performance of the proposed method is evaluated using a large number of fluorescence microscopy images. A quantitative comparison is also performed with some state-of-the-art segmentation approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信