基于自适应时空正则化的内河船舶跟踪相关滤波器

Lei Xiao, Feiyan Nie, Jingjing Shao, Zhongyi Hu
{"title":"基于自适应时空正则化的内河船舶跟踪相关滤波器","authors":"Lei Xiao, Feiyan Nie, Jingjing Shao, Zhongyi Hu","doi":"10.1109/ICSAI57119.2022.10005479","DOIUrl":null,"url":null,"abstract":"Ship tracking is an important task of inland waterway video surveillance. Inland waterway scenes are complex. Generic algorithms applied directly to inland river scenes are susceptible to performance degradation due to boat occlusion, light changes, and water ripples. In this paper, we propose the ATSR-DCF (Self-adaptive Temporal and Spatial Regularization Discriminative Correlation Filter) algorithm to improve ship tracking performance using adaptive spatiotemporal regularization and ship position incremental information. First, ATSR-DCF gets the initial frame and initial spatial and temporal regularization weights to train the correlation filter. Second, input other video frames, compute the optimized spatial and temporal regularization weights and update the filter using the Alternating Direction Method of Multipliers (ADMM). Finally, obtaining video sequence position increments constrains the subsequent position for predicting the target ship. In order to evaluate the performance of ASTR-DCF, we perform experiments using our group’s inland waterway ship dataset. The results show that the ATSR-DCF tracking performance outperforms other comparative algorithms. The tracking success rate is 80.0% and the accuracy rate is 86.6%.","PeriodicalId":339547,"journal":{"name":"2022 8th International Conference on Systems and Informatics (ICSAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Correlation Filter with Adaptive Spatial and Temporal Regularization for Inland Ship Tracking\",\"authors\":\"Lei Xiao, Feiyan Nie, Jingjing Shao, Zhongyi Hu\",\"doi\":\"10.1109/ICSAI57119.2022.10005479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship tracking is an important task of inland waterway video surveillance. Inland waterway scenes are complex. Generic algorithms applied directly to inland river scenes are susceptible to performance degradation due to boat occlusion, light changes, and water ripples. In this paper, we propose the ATSR-DCF (Self-adaptive Temporal and Spatial Regularization Discriminative Correlation Filter) algorithm to improve ship tracking performance using adaptive spatiotemporal regularization and ship position incremental information. First, ATSR-DCF gets the initial frame and initial spatial and temporal regularization weights to train the correlation filter. Second, input other video frames, compute the optimized spatial and temporal regularization weights and update the filter using the Alternating Direction Method of Multipliers (ADMM). Finally, obtaining video sequence position increments constrains the subsequent position for predicting the target ship. In order to evaluate the performance of ASTR-DCF, we perform experiments using our group’s inland waterway ship dataset. The results show that the ATSR-DCF tracking performance outperforms other comparative algorithms. The tracking success rate is 80.0% and the accuracy rate is 86.6%.\",\"PeriodicalId\":339547,\"journal\":{\"name\":\"2022 8th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI57119.2022.10005479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI57119.2022.10005479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

船舶跟踪是内河视频监控的一项重要任务。内河航道的情况很复杂。直接应用于内河场景的通用算法容易由于船只遮挡、光线变化和水波纹而导致性能下降。本文提出了自适应时空正则化判别相关滤波(ATSR-DCF)算法,利用自适应时空正则化和船舶位置增量信息来提高船舶跟踪性能。首先,ATSR-DCF获得初始帧和初始时空正则化权值来训练相关滤波器。其次,输入其他视频帧,计算优化后的时空正则化权重,并使用交替方向乘法器(ADMM)更新滤波器。最后,获取视频序列的位置增量来约束后续的目标船位置预测。为了评估astra - dcf的性能,我们使用我们小组的内河船舶数据集进行了实验。结果表明,ATSR-DCF跟踪性能优于其他比较算法。跟踪成功率为80.0%,准确率为86.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Correlation Filter with Adaptive Spatial and Temporal Regularization for Inland Ship Tracking
Ship tracking is an important task of inland waterway video surveillance. Inland waterway scenes are complex. Generic algorithms applied directly to inland river scenes are susceptible to performance degradation due to boat occlusion, light changes, and water ripples. In this paper, we propose the ATSR-DCF (Self-adaptive Temporal and Spatial Regularization Discriminative Correlation Filter) algorithm to improve ship tracking performance using adaptive spatiotemporal regularization and ship position incremental information. First, ATSR-DCF gets the initial frame and initial spatial and temporal regularization weights to train the correlation filter. Second, input other video frames, compute the optimized spatial and temporal regularization weights and update the filter using the Alternating Direction Method of Multipliers (ADMM). Finally, obtaining video sequence position increments constrains the subsequent position for predicting the target ship. In order to evaluate the performance of ASTR-DCF, we perform experiments using our group’s inland waterway ship dataset. The results show that the ATSR-DCF tracking performance outperforms other comparative algorithms. The tracking success rate is 80.0% and the accuracy rate is 86.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信