关于全动态图稀疏器

Ittai Abraham, D. Durfee, I. Koutis, Sebastian Krinninger, Richard Peng
{"title":"关于全动态图稀疏器","authors":"Ittai Abraham, D. Durfee, I. Koutis, Sebastian Krinninger, Richard Peng","doi":"10.1109/FOCS.2016.44","DOIUrl":null,"url":null,"abstract":"We initiate the study of fast dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-spectral sparsifier with amortized update time poly(log n, ϵ<sup>-1</sup>). Second, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-cut sparsifier with worst-case update time poly(log n, ϵ<sup>-1</sup>). Both sparsifiers have size n · poly(log n, ϵ<sup>-1</sup>). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1 - ϵ)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(log n, ϵ<sup>-1</sup>).","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"On Fully Dynamic Graph Sparsifiers\",\"authors\":\"Ittai Abraham, D. Durfee, I. Koutis, Sebastian Krinninger, Richard Peng\",\"doi\":\"10.1109/FOCS.2016.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of fast dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-spectral sparsifier with amortized update time poly(log n, ϵ<sup>-1</sup>). Second, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-cut sparsifier with worst-case update time poly(log n, ϵ<sup>-1</sup>). Both sparsifiers have size n · poly(log n, ϵ<sup>-1</sup>). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1 - ϵ)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(log n, ϵ<sup>-1</sup>).\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

我们开始研究图稀疏化问题的快速动态算法,并获得了完全动态的算法,允许边缘插入和边缘删除,在图的每次更新后花费多对数时间。我们的三个主要结果如下。首先,我们给出了一个完全动态的算法来维持一个(1±λ)-频谱稀疏器,它具有平摊更新时间多边形(log n, ϵ-1)。其次,我们给出了一个完全动态的算法,用于维护一个(1±λ)切稀疏器,具有最坏更新时间poly(log n, ϵ-1)。两种稀疏剂的大小都是n·poly(log n, ϵ-1)。第三,我们应用我们的动态稀疏器算法来获得一个完全动态的算法,用于在一个具有平摊更新时间多边形(log n, ϵ-1)的无加权、无向、二部图中维持最大流量值的(1 - λ)-近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fully Dynamic Graph Sparsifiers
We initiate the study of fast dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-spectral sparsifier with amortized update time poly(log n, ϵ-1). Second, we give a fully dynamic algorithm for maintaining a (1 ± ϵ)-cut sparsifier with worst-case update time poly(log n, ϵ-1). Both sparsifiers have size n · poly(log n, ϵ-1). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1 - ϵ)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(log n, ϵ-1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信