使用混沌映射加密图像和视频内容

A. Pande, P. Mohapatra, Joseph Zambreno
{"title":"使用混沌映射加密图像和视频内容","authors":"A. Pande, P. Mohapatra, Joseph Zambreno","doi":"10.1109/ISM.2011.35","DOIUrl":null,"url":null,"abstract":"Arithmetic Coding (AC) is widely used for the entropy coding of text and multimedia data. It involves recursive partitioning of the range [0,1) in accordance with the relative probabilities of occurrence of the input symbols. In this paper, we present a data (image or video) encryption scheme based on arithmetic coding, which we refer to as Chaotic Arithmetic Coding (CAC). In CAC, a large number of chaotic maps can be used to perform coding, each achieving Shannon optimal compression performance. The exact choice of map is governed by a key. CAC has the effect of scrambling the intervals without making any changes to the width of interval in which the codeword must lie, thereby allowing encryption without sacrificing any coding efficiency. We next describe Binary CAC (BCAC) with some simple Security Enhancement (SE) modes which can alleviate the security of scheme against known cryptanalysis against AC-based encryption techniques. These modes, namely Plaintext Modulation (PM), Pair-Wise Independent Keys (PWIK), and Key and cipher text Mixing (MIX) modes have insignificant computational overhead, while BCAC decoder has lower hardware requirements than BAC coder itself, making BCAC with SE as excellent choice for deployment in secure embedded multimedia systems. A bit sensitivity analysis for key and plaintext is presented along with experimental tests for compression performance.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Using Chaotic Maps for Encrypting Image and Video Content\",\"authors\":\"A. Pande, P. Mohapatra, Joseph Zambreno\",\"doi\":\"10.1109/ISM.2011.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arithmetic Coding (AC) is widely used for the entropy coding of text and multimedia data. It involves recursive partitioning of the range [0,1) in accordance with the relative probabilities of occurrence of the input symbols. In this paper, we present a data (image or video) encryption scheme based on arithmetic coding, which we refer to as Chaotic Arithmetic Coding (CAC). In CAC, a large number of chaotic maps can be used to perform coding, each achieving Shannon optimal compression performance. The exact choice of map is governed by a key. CAC has the effect of scrambling the intervals without making any changes to the width of interval in which the codeword must lie, thereby allowing encryption without sacrificing any coding efficiency. We next describe Binary CAC (BCAC) with some simple Security Enhancement (SE) modes which can alleviate the security of scheme against known cryptanalysis against AC-based encryption techniques. These modes, namely Plaintext Modulation (PM), Pair-Wise Independent Keys (PWIK), and Key and cipher text Mixing (MIX) modes have insignificant computational overhead, while BCAC decoder has lower hardware requirements than BAC coder itself, making BCAC with SE as excellent choice for deployment in secure embedded multimedia systems. A bit sensitivity analysis for key and plaintext is presented along with experimental tests for compression performance.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

算术编码(AC)被广泛用于文本和多媒体数据的熵编码。它涉及根据输入符号出现的相对概率对范围[0,1)进行递归划分。本文提出了一种基于算术编码的数据(图像或视频)加密方案,我们称之为混沌算术编码(CAC)。在CAC中,可以使用大量的混沌映射进行编码,每个混沌映射都可以实现香农最优压缩性能。映射的确切选择由一个键控制。CAC具有置乱间隔而不改变码字必须所在的间隔宽度的效果,从而允许加密而不牺牲任何编码效率。接下来,我们用一些简单的安全增强(SE)模式描述二进制CAC (BCAC),这些模式可以降低方案对已知密码分析和基于ac的加密技术的安全性。这些模式,即明文调制(PM)、对独立密钥(PWIK)和密钥与密文混合(MIX)模式,计算开销微不足道,而BCAC解码器比BAC编码器本身具有更低的硬件要求,使BCAC与SE成为部署在安全嵌入式多媒体系统中的绝佳选择。提出了密钥和明文的位敏感性分析方法,并进行了压缩性能的实验测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Chaotic Maps for Encrypting Image and Video Content
Arithmetic Coding (AC) is widely used for the entropy coding of text and multimedia data. It involves recursive partitioning of the range [0,1) in accordance with the relative probabilities of occurrence of the input symbols. In this paper, we present a data (image or video) encryption scheme based on arithmetic coding, which we refer to as Chaotic Arithmetic Coding (CAC). In CAC, a large number of chaotic maps can be used to perform coding, each achieving Shannon optimal compression performance. The exact choice of map is governed by a key. CAC has the effect of scrambling the intervals without making any changes to the width of interval in which the codeword must lie, thereby allowing encryption without sacrificing any coding efficiency. We next describe Binary CAC (BCAC) with some simple Security Enhancement (SE) modes which can alleviate the security of scheme against known cryptanalysis against AC-based encryption techniques. These modes, namely Plaintext Modulation (PM), Pair-Wise Independent Keys (PWIK), and Key and cipher text Mixing (MIX) modes have insignificant computational overhead, while BCAC decoder has lower hardware requirements than BAC coder itself, making BCAC with SE as excellent choice for deployment in secure embedded multimedia systems. A bit sensitivity analysis for key and plaintext is presented along with experimental tests for compression performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信