{"title":"基于PI控制的动态反演速度与距离控制系统综合","authors":"K. Enomoto, T. Yamasaki, H. Takano, Y. Baba","doi":"10.2322/JJSASS.58.285","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce a velocity and distance control system for leader-following UAVs. In our previous paper, we already proposed a velocity and distance control system, but the system has a problem of ``offsets'' due to aerodynamic errors and/or leader trajectories. So in this paper, in order to eliminate the offset, a new approach of the velocity and distance control design is introduced. Simulation results show that the proposed velocity and distance control system provides a good performance and there are no offsets.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Velocity and Distance Control System Synthesis Using Dynamic Inversion with PI Control\",\"authors\":\"K. Enomoto, T. Yamasaki, H. Takano, Y. Baba\",\"doi\":\"10.2322/JJSASS.58.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce a velocity and distance control system for leader-following UAVs. In our previous paper, we already proposed a velocity and distance control system, but the system has a problem of ``offsets'' due to aerodynamic errors and/or leader trajectories. So in this paper, in order to eliminate the offset, a new approach of the velocity and distance control design is introduced. Simulation results show that the proposed velocity and distance control system provides a good performance and there are no offsets.\",\"PeriodicalId\":144591,\"journal\":{\"name\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/JJSASS.58.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.58.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Velocity and Distance Control System Synthesis Using Dynamic Inversion with PI Control
The purpose of this paper is to introduce a velocity and distance control system for leader-following UAVs. In our previous paper, we already proposed a velocity and distance control system, but the system has a problem of ``offsets'' due to aerodynamic errors and/or leader trajectories. So in this paper, in order to eliminate the offset, a new approach of the velocity and distance control design is introduced. Simulation results show that the proposed velocity and distance control system provides a good performance and there are no offsets.