劈裂环谐振腔超表面的全加性制备方法

R. Imani, Shailesh Chouhan, J. Delsing, Sarthak Acharya
{"title":"劈裂环谐振腔超表面的全加性制备方法","authors":"R. Imani, Shailesh Chouhan, J. Delsing, Sarthak Acharya","doi":"10.1109/ectc51906.2022.00288","DOIUrl":null,"url":null,"abstract":"Metasurfaces, as a two-dimensional (2D) form of metamaterial, offer the possibility of designing miniaturized antennas for radio frequency (RF) energy harvesting systems with high efficiency, but fabrication of these antennas is still a major challenge. Printed circuit board (PCB) lithography, utilizing subtractive etch-and-print techniques to create metal interconnects on PCBs, was the first technique used to create metasurfaces antennas and remains the dominant technique to this day. The development of large-area fabrication techniques that are flexible, precise, uniform, cost-effective, and environmentally friendly is urgently needed for creating next-generation metasurfaces antenna. The present study reports a new fully additive manufacturing method for the fabrication of copper split-ring resonator (SRR) arrays on a PCB as a planar compact metasurfaces antenna. This new method was developed by combining sequential build up (SBU), laser direct writing (LDW), and covalent bonded metallization (CBM) methods and called (SBU-CBM). In this method, standard FR-4 covered with a layer of polyurethane was used as a basic PCB. The polymer surface was coated with a grafting molecule, followed by LDW to pattern the SRR array on the PCB. Finally, in electroless plating, only the laser-scanned area was selectively plated, and copper covalent bond metallization was selectively plated on the SRR pattern. Copper SRR arrays with different sizes were successfully fabricated on PCB using the SBU-CBM method. Copper strip lines within the SRR repeating building block were miniaturized up to 5 μm. To the best of our knowledge, this is the smallest size of a PCB antenna that has been reported to date.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fully Additive Approach for the Fabrication of Split-Ring Resonator Metasurfaces\",\"authors\":\"R. Imani, Shailesh Chouhan, J. Delsing, Sarthak Acharya\",\"doi\":\"10.1109/ectc51906.2022.00288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces, as a two-dimensional (2D) form of metamaterial, offer the possibility of designing miniaturized antennas for radio frequency (RF) energy harvesting systems with high efficiency, but fabrication of these antennas is still a major challenge. Printed circuit board (PCB) lithography, utilizing subtractive etch-and-print techniques to create metal interconnects on PCBs, was the first technique used to create metasurfaces antennas and remains the dominant technique to this day. The development of large-area fabrication techniques that are flexible, precise, uniform, cost-effective, and environmentally friendly is urgently needed for creating next-generation metasurfaces antenna. The present study reports a new fully additive manufacturing method for the fabrication of copper split-ring resonator (SRR) arrays on a PCB as a planar compact metasurfaces antenna. This new method was developed by combining sequential build up (SBU), laser direct writing (LDW), and covalent bonded metallization (CBM) methods and called (SBU-CBM). In this method, standard FR-4 covered with a layer of polyurethane was used as a basic PCB. The polymer surface was coated with a grafting molecule, followed by LDW to pattern the SRR array on the PCB. Finally, in electroless plating, only the laser-scanned area was selectively plated, and copper covalent bond metallization was selectively plated on the SRR pattern. Copper SRR arrays with different sizes were successfully fabricated on PCB using the SBU-CBM method. Copper strip lines within the SRR repeating building block were miniaturized up to 5 μm. To the best of our knowledge, this is the smallest size of a PCB antenna that has been reported to date.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超表面作为一种二维(2D)形式的超材料,为设计高效率的射频(RF)能量收集系统的小型化天线提供了可能性,但这些天线的制造仍然是一个主要挑战。印刷电路板(PCB)光刻技术利用减法蚀刻和印刷技术在PCB上创建金属互连,是用于创建超表面天线的第一种技术,并且至今仍是主导技术。开发灵活、精确、均匀、经济、环保的大面积制造技术是制造下一代超表面天线的迫切需要。本研究报告了一种新的全增材制造方法,用于在PCB上制造铜分裂环谐振器(SRR)阵列作为平面紧凑的超表面天线。这种新方法结合了顺序构建(SBU)、激光直接写入(LDW)和共价键金属化(CBM)方法,称为(SBU-CBM)。在这种方法中,标准FR-4覆盖一层聚氨酯作为基本PCB。在聚合物表面涂覆接枝分子,然后用LDW在PCB上对SRR阵列进行图案化。最后,在化学镀中,仅对激光扫描区域进行选择性镀,并在SRR模式上选择性镀铜共价键金属化。采用SBU-CBM方法在PCB上成功制备了不同尺寸的铜SRR阵列。SRR重复构件内的铜带线微型化至5 μm。据我们所知,这是迄今为止报道的最小尺寸的PCB天线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fully Additive Approach for the Fabrication of Split-Ring Resonator Metasurfaces
Metasurfaces, as a two-dimensional (2D) form of metamaterial, offer the possibility of designing miniaturized antennas for radio frequency (RF) energy harvesting systems with high efficiency, but fabrication of these antennas is still a major challenge. Printed circuit board (PCB) lithography, utilizing subtractive etch-and-print techniques to create metal interconnects on PCBs, was the first technique used to create metasurfaces antennas and remains the dominant technique to this day. The development of large-area fabrication techniques that are flexible, precise, uniform, cost-effective, and environmentally friendly is urgently needed for creating next-generation metasurfaces antenna. The present study reports a new fully additive manufacturing method for the fabrication of copper split-ring resonator (SRR) arrays on a PCB as a planar compact metasurfaces antenna. This new method was developed by combining sequential build up (SBU), laser direct writing (LDW), and covalent bonded metallization (CBM) methods and called (SBU-CBM). In this method, standard FR-4 covered with a layer of polyurethane was used as a basic PCB. The polymer surface was coated with a grafting molecule, followed by LDW to pattern the SRR array on the PCB. Finally, in electroless plating, only the laser-scanned area was selectively plated, and copper covalent bond metallization was selectively plated on the SRR pattern. Copper SRR arrays with different sizes were successfully fabricated on PCB using the SBU-CBM method. Copper strip lines within the SRR repeating building block were miniaturized up to 5 μm. To the best of our knowledge, this is the smallest size of a PCB antenna that has been reported to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信