基于极值理论的分布无关CFAR探测器

M. Piotrkowski
{"title":"基于极值理论的分布无关CFAR探测器","authors":"M. Piotrkowski","doi":"10.1109/IRS.2006.4338005","DOIUrl":null,"url":null,"abstract":"According to the extreme value theory, the tail distribution of virtually any statistical distribution can be uniquely modeled by the generalized Pareto distribution. Based on this property, a CFAR detector making no assumption about the distribution of interference is proposed. The parameters of the generalized Pareto distribution can be estimated using the method of L-moments. The performance of the new detector is compared to CA- and Optimized Weibull CFAR detector in the Rayleigh, Weibull and lognormally distributed clutter amplitude.","PeriodicalId":124475,"journal":{"name":"2006 International Radar Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Distribution Independent CFAR Detector Using Extreme Value Theory\",\"authors\":\"M. Piotrkowski\",\"doi\":\"10.1109/IRS.2006.4338005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the extreme value theory, the tail distribution of virtually any statistical distribution can be uniquely modeled by the generalized Pareto distribution. Based on this property, a CFAR detector making no assumption about the distribution of interference is proposed. The parameters of the generalized Pareto distribution can be estimated using the method of L-moments. The performance of the new detector is compared to CA- and Optimized Weibull CFAR detector in the Rayleigh, Weibull and lognormally distributed clutter amplitude.\",\"PeriodicalId\":124475,\"journal\":{\"name\":\"2006 International Radar Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Radar Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2006.4338005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Radar Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2006.4338005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

根据极值理论,几乎任何统计分布的尾部分布都可以用广义帕累托分布唯一地建模。基于这一特性,提出了一种不假设干扰分布的CFAR探测器。广义Pareto分布的参数可用l矩法估计。在瑞利、威布尔和对数正态分布的杂波幅值方面,与CA-和优化威布尔CFAR探测器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Independent CFAR Detector Using Extreme Value Theory
According to the extreme value theory, the tail distribution of virtually any statistical distribution can be uniquely modeled by the generalized Pareto distribution. Based on this property, a CFAR detector making no assumption about the distribution of interference is proposed. The parameters of the generalized Pareto distribution can be estimated using the method of L-moments. The performance of the new detector is compared to CA- and Optimized Weibull CFAR detector in the Rayleigh, Weibull and lognormally distributed clutter amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信