多斯概周期函数,贝西科维奇-多斯概周期函数和卷积积

M. Kostic
{"title":"多斯概周期函数,贝西科维奇-多斯概周期函数和卷积积","authors":"M. Kostic","doi":"10.20948/mathmon-2019-46-2","DOIUrl":null,"url":null,"abstract":"In the paper under review, we analyze the invariance of Doss almost periodicity and Besicovitch-Doss almost periodicity under the actions of convolution products. We thus continue our recent research studies \\cite{fedorov-novi} and \\cite{NSJOM-besik} by investigating the case in which the solution operator family $(R(t))_{t>0}$ under our consideration has special growth rates at zero and infinity. In contrast to \\cite{NSJOM-besik}, the results obtained in this paper can be incorporated in the qualitative analysis of solutions to abstract (degenerate) inhomogeneous fractional differential equations in Banach spaces.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Doss almost periodic functions, Besicovitch-Doss almost periodic functions and convolution products\",\"authors\":\"M. Kostic\",\"doi\":\"10.20948/mathmon-2019-46-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper under review, we analyze the invariance of Doss almost periodicity and Besicovitch-Doss almost periodicity under the actions of convolution products. We thus continue our recent research studies \\\\cite{fedorov-novi} and \\\\cite{NSJOM-besik} by investigating the case in which the solution operator family $(R(t))_{t>0}$ under our consideration has special growth rates at zero and infinity. In contrast to \\\\cite{NSJOM-besik}, the results obtained in this paper can be incorporated in the qualitative analysis of solutions to abstract (degenerate) inhomogeneous fractional differential equations in Banach spaces.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmon-2019-46-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmon-2019-46-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了在卷积积作用下Doss概周期和Besicovitch-Doss概周期的不变性。因此,我们通过研究我们所考虑的解算子族$(R(t))_{t>0}$在零和无穷处具有特殊增长率的情况,继续我们最近的研究\cite{fedorov-novi}和\cite{NSJOM-besik}。与\cite{NSJOM-besik}相反,本文所得结果可用于Banach空间中抽象(退化)非齐次分数阶微分方程解的定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doss almost periodic functions, Besicovitch-Doss almost periodic functions and convolution products
In the paper under review, we analyze the invariance of Doss almost periodicity and Besicovitch-Doss almost periodicity under the actions of convolution products. We thus continue our recent research studies \cite{fedorov-novi} and \cite{NSJOM-besik} by investigating the case in which the solution operator family $(R(t))_{t>0}$ under our consideration has special growth rates at zero and infinity. In contrast to \cite{NSJOM-besik}, the results obtained in this paper can be incorporated in the qualitative analysis of solutions to abstract (degenerate) inhomogeneous fractional differential equations in Banach spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信