基于EM算法最大化视听联合概率的语唇运动合成

Satoshi Nakamura, E. Yamamoto, K. Shikano
{"title":"基于EM算法最大化视听联合概率的语唇运动合成","authors":"Satoshi Nakamura, E. Yamamoto, K. Shikano","doi":"10.1109/MMSP.1998.738912","DOIUrl":null,"url":null,"abstract":"We investigate methods using the hidden Markov model (HMM) to drive a lip movement sequence with input speech. We have already investigated a mapping method based on the Viterbi decoding algorithm which converts an input speech to a lip movement sequence through the most likely HMM state sequence conducted by audio HMMs. However, the method contains a substantial problem of producing errors along incorrectly decoded HMM states. This paper newly proposes a method to re-estimate the visual parameters using the HMMs of the audio-visual joint probability under the expectation-maximization (EM) algorithm. In experiments, the proposed mapping method using the EM algorithm shows an error reduction of 26% compared to a method using the Viterbi algorithm at incorrectly decoded bi-labial consonants.","PeriodicalId":180426,"journal":{"name":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Speech-to-lip movement synthesis maximizing audio-visual joint probability based on EM algorithm\",\"authors\":\"Satoshi Nakamura, E. Yamamoto, K. Shikano\",\"doi\":\"10.1109/MMSP.1998.738912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate methods using the hidden Markov model (HMM) to drive a lip movement sequence with input speech. We have already investigated a mapping method based on the Viterbi decoding algorithm which converts an input speech to a lip movement sequence through the most likely HMM state sequence conducted by audio HMMs. However, the method contains a substantial problem of producing errors along incorrectly decoded HMM states. This paper newly proposes a method to re-estimate the visual parameters using the HMMs of the audio-visual joint probability under the expectation-maximization (EM) algorithm. In experiments, the proposed mapping method using the EM algorithm shows an error reduction of 26% compared to a method using the Viterbi algorithm at incorrectly decoded bi-labial consonants.\",\"PeriodicalId\":180426,\"journal\":{\"name\":\"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.1998.738912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.1998.738912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了使用隐马尔可夫模型(HMM)驱动带有输入语音的唇动序列的方法。我们已经研究了一种基于Viterbi解码算法的映射方法,该方法通过音频HMM进行的最有可能的HMM状态序列将输入语音转换为唇动序列。然而,该方法存在一个很大的问题,即在错误解码的HMM状态上产生错误。本文提出了一种利用期望最大化算法下的视听联合概率hmm对视觉参数进行重估计的方法。在实验中,与使用Viterbi算法的方法相比,使用EM算法提出的映射方法在错误解码双唇辅音时的误差减少了26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech-to-lip movement synthesis maximizing audio-visual joint probability based on EM algorithm
We investigate methods using the hidden Markov model (HMM) to drive a lip movement sequence with input speech. We have already investigated a mapping method based on the Viterbi decoding algorithm which converts an input speech to a lip movement sequence through the most likely HMM state sequence conducted by audio HMMs. However, the method contains a substantial problem of producing errors along incorrectly decoded HMM states. This paper newly proposes a method to re-estimate the visual parameters using the HMMs of the audio-visual joint probability under the expectation-maximization (EM) algorithm. In experiments, the proposed mapping method using the EM algorithm shows an error reduction of 26% compared to a method using the Viterbi algorithm at incorrectly decoded bi-labial consonants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信