基于遗传算法的自适应广义预测控制综合参数优化

Abdelaziz Mouhou, A. Badri, A. Ballouk, Y. Sayouti
{"title":"基于遗传算法的自适应广义预测控制综合参数优化","authors":"Abdelaziz Mouhou, A. Badri, A. Ballouk, Y. Sayouti","doi":"10.1145/3128128.3128150","DOIUrl":null,"url":null,"abstract":"This paper concentrates on the off-line optimization of adaptive generalized predictive control (AGPC) tuning parameters using genetic algorithms (GAs). The Adaptive generalized predictive control algorithm is detailed and presented. A single input single output (SISO) controlled autoregressive integrated moving average (CARIMA) model is used to predict the future behavior of the system. The online parametric adaptation algorithm (PAA) used in this work is based on recursive least squares (RLS) identification algorithm with fixed forgetting factor. The synthesis parameters (minimal prediction horizon, maximal prediction horizon, control horizon and cost weighting factor) are optimized using genetic algorithms, this technique improves the closed-loop performances. The fitness function to be minimized is a set of closed loop performance metrics (the settling time, the rise time, the overshoot and the variance of the control signal). In order to verify the validity of the proposed strategy, a simulation example of asynchronous motor speed is presented. The obtained results shows the effectiveness of this approach.","PeriodicalId":362403,"journal":{"name":"Proceedings of the 2017 International Conference on Smart Digital Environment","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of synthesis parameters of adaptive generalized predictive control using genetic algorithms\",\"authors\":\"Abdelaziz Mouhou, A. Badri, A. Ballouk, Y. Sayouti\",\"doi\":\"10.1145/3128128.3128150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concentrates on the off-line optimization of adaptive generalized predictive control (AGPC) tuning parameters using genetic algorithms (GAs). The Adaptive generalized predictive control algorithm is detailed and presented. A single input single output (SISO) controlled autoregressive integrated moving average (CARIMA) model is used to predict the future behavior of the system. The online parametric adaptation algorithm (PAA) used in this work is based on recursive least squares (RLS) identification algorithm with fixed forgetting factor. The synthesis parameters (minimal prediction horizon, maximal prediction horizon, control horizon and cost weighting factor) are optimized using genetic algorithms, this technique improves the closed-loop performances. The fitness function to be minimized is a set of closed loop performance metrics (the settling time, the rise time, the overshoot and the variance of the control signal). In order to verify the validity of the proposed strategy, a simulation example of asynchronous motor speed is presented. The obtained results shows the effectiveness of this approach.\",\"PeriodicalId\":362403,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Smart Digital Environment\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Smart Digital Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3128128.3128150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Smart Digital Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3128128.3128150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了基于遗传算法的自适应广义预测控制(AGPC)整定参数离线优化问题。详细介绍了自适应广义预测控制算法。采用单输入单输出(SISO)控制的自回归积分移动平均(CARIMA)模型来预测系统的未来行为。本文采用的在线参数自适应算法(PAA)是基于固定遗忘因子的递归最小二乘辨识算法。利用遗传算法对最小预测层、最大预测层、控制层和代价加权因子等综合参数进行优化,提高了系统的闭环性能。要最小化的适应度函数是一组闭环性能指标(控制信号的沉降时间、上升时间、超调量和方差)。为了验证所提策略的有效性,给出了异步电动机转速仿真实例。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of synthesis parameters of adaptive generalized predictive control using genetic algorithms
This paper concentrates on the off-line optimization of adaptive generalized predictive control (AGPC) tuning parameters using genetic algorithms (GAs). The Adaptive generalized predictive control algorithm is detailed and presented. A single input single output (SISO) controlled autoregressive integrated moving average (CARIMA) model is used to predict the future behavior of the system. The online parametric adaptation algorithm (PAA) used in this work is based on recursive least squares (RLS) identification algorithm with fixed forgetting factor. The synthesis parameters (minimal prediction horizon, maximal prediction horizon, control horizon and cost weighting factor) are optimized using genetic algorithms, this technique improves the closed-loop performances. The fitness function to be minimized is a set of closed loop performance metrics (the settling time, the rise time, the overshoot and the variance of the control signal). In order to verify the validity of the proposed strategy, a simulation example of asynchronous motor speed is presented. The obtained results shows the effectiveness of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信