限时追逐式限时距离解码

J. Weber, M. Fossorier
{"title":"限时追逐式限时距离解码","authors":"J. Weber, M. Fossorier","doi":"10.1109/ISIT.2004.1365297","DOIUrl":null,"url":null,"abstract":"The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms (\"Chase-3\") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limited-trial chase-like bounded-distance decoding\",\"authors\":\"J. Weber, M. Fossorier\",\"doi\":\"10.1109/ISIT.2004.1365297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms (\\\"Chase-3\\\") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

追踪解码算法是基于可靠性的算法,可实现任何汉明距离d的二进制线性码的有界距离(BD)解码。原始追踪算法的最简单版本(“chase -3”)使用传统二进制解码器的O(d)次试验。在本文中,我们提出了一类比原来的Chase-3算法复杂度更低的类chase BD解码算法。特别是,这类中最不复杂的成员只需要O(d/sup 2/3/)次试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limited-trial chase-like bounded-distance decoding
The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms ("Chase-3") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信