{"title":"限时追逐式限时距离解码","authors":"J. Weber, M. Fossorier","doi":"10.1109/ISIT.2004.1365297","DOIUrl":null,"url":null,"abstract":"The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms (\"Chase-3\") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limited-trial chase-like bounded-distance decoding\",\"authors\":\"J. Weber, M. Fossorier\",\"doi\":\"10.1109/ISIT.2004.1365297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms (\\\"Chase-3\\\") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The chase decoding algorithms are reliability-based algorithms achieving bounded-distance (BD) decoding for any binary linear code of Hamming distance d. The least complex version of the original chase algorithms ("Chase-3") uses O(d) trials of a conventional binary decoder. In this paper, we propose a class of Chase-like BD decoding algorithms of lower complexity than the original Chase-3 algorithm. In particular, the least complex member of this class requires only O(d/sup 2/3/) trials.