{"title":"基于深度神经网络的无损图像压缩伪造检测误差分析","authors":"Chintakrindi Geaya Sri, Shahana Bano, T. Deepika, Nehanth Kola, Yerramreddy Lakshmi Pranathi","doi":"10.1109/CONIT51480.2021.9498357","DOIUrl":null,"url":null,"abstract":"The proposed model is implemented in deep learning based on counterfeit feature extraction and Error Level Analysis (ELA) techniques. Error level analysis is used to improve the efficiency of distinguishing copy-move images produced by Deep Fake from the real ones. Error Level Analysis is used on images in-depth for identifying whether the photograph has long passed through changing. This Model uses CNN on the dataset of images for training and to test the dataset for identifying the forged image. Convolution neural network (CNN) can extract the counterfeit attribute and detect if images are false. In the proposed approach after the tests were carried out, it is displayed with the pie chart representation based on percentage the image is detected. It also detects different image compression ratios using the ELA process. The results of the assessments display the effectiveness of the proposed method.","PeriodicalId":426131,"journal":{"name":"2021 International Conference on Intelligent Technologies (CONIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Neural Networks Based Error Level Analysis for Lossless Image Compression Based Forgery Detection\",\"authors\":\"Chintakrindi Geaya Sri, Shahana Bano, T. Deepika, Nehanth Kola, Yerramreddy Lakshmi Pranathi\",\"doi\":\"10.1109/CONIT51480.2021.9498357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed model is implemented in deep learning based on counterfeit feature extraction and Error Level Analysis (ELA) techniques. Error level analysis is used to improve the efficiency of distinguishing copy-move images produced by Deep Fake from the real ones. Error Level Analysis is used on images in-depth for identifying whether the photograph has long passed through changing. This Model uses CNN on the dataset of images for training and to test the dataset for identifying the forged image. Convolution neural network (CNN) can extract the counterfeit attribute and detect if images are false. In the proposed approach after the tests were carried out, it is displayed with the pie chart representation based on percentage the image is detected. It also detects different image compression ratios using the ELA process. The results of the assessments display the effectiveness of the proposed method.\",\"PeriodicalId\":426131,\"journal\":{\"name\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Technologies (CONIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIT51480.2021.9498357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Technologies (CONIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIT51480.2021.9498357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Neural Networks Based Error Level Analysis for Lossless Image Compression Based Forgery Detection
The proposed model is implemented in deep learning based on counterfeit feature extraction and Error Level Analysis (ELA) techniques. Error level analysis is used to improve the efficiency of distinguishing copy-move images produced by Deep Fake from the real ones. Error Level Analysis is used on images in-depth for identifying whether the photograph has long passed through changing. This Model uses CNN on the dataset of images for training and to test the dataset for identifying the forged image. Convolution neural network (CNN) can extract the counterfeit attribute and detect if images are false. In the proposed approach after the tests were carried out, it is displayed with the pie chart representation based on percentage the image is detected. It also detects different image compression ratios using the ELA process. The results of the assessments display the effectiveness of the proposed method.