情感分析系统特征提取和分类方法的性能研究

Raghdah Elnadree, A. El-Sisi, Walid Atwa
{"title":"情感分析系统特征提取和分类方法的性能研究","authors":"Raghdah Elnadree, A. El-Sisi, Walid Atwa","doi":"10.21608/ijci.2021.65578.1044","DOIUrl":null,"url":null,"abstract":"Data pre-processing and feature extraction of micro-blogging data in sentiment analysis systems becomes an effective field of analysis. Object identification, negation expressions, sarcasm, outlines, misspellings are the major issues faced during sentiment analysis. So, data pre-processing in a sentiment analysis system is a conclusive step to improve data quality, raise the extraction, and classification of meaningful data. This paper presents a sentiment analysis system for performance investigation. Several pre-processing and feature extraction techniques are applied to optimize the sentiment analysis. Our system comprises three different components: data pre-processing, feature extraction, and sentiment analysis. The pre-processing and feature extraction approaches enhance the sentiment analysis system performance. We compare between different sentiment analysis approaches using a dataset of US Airlines from Twitter. Results show achieving high performance when using the Word2Vec approach with XGBoost and random forest classification algorithms. Also, the results show the classification technique, Naive Bayes is the lowest performance.","PeriodicalId":137729,"journal":{"name":"IJCI. International Journal of Computers and Information","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Investigation of Features Extraction and Classification Approaches for Sentiment Analysis Systems\",\"authors\":\"Raghdah Elnadree, A. El-Sisi, Walid Atwa\",\"doi\":\"10.21608/ijci.2021.65578.1044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data pre-processing and feature extraction of micro-blogging data in sentiment analysis systems becomes an effective field of analysis. Object identification, negation expressions, sarcasm, outlines, misspellings are the major issues faced during sentiment analysis. So, data pre-processing in a sentiment analysis system is a conclusive step to improve data quality, raise the extraction, and classification of meaningful data. This paper presents a sentiment analysis system for performance investigation. Several pre-processing and feature extraction techniques are applied to optimize the sentiment analysis. Our system comprises three different components: data pre-processing, feature extraction, and sentiment analysis. The pre-processing and feature extraction approaches enhance the sentiment analysis system performance. We compare between different sentiment analysis approaches using a dataset of US Airlines from Twitter. Results show achieving high performance when using the Word2Vec approach with XGBoost and random forest classification algorithms. Also, the results show the classification technique, Naive Bayes is the lowest performance.\",\"PeriodicalId\":137729,\"journal\":{\"name\":\"IJCI. International Journal of Computers and Information\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCI. International Journal of Computers and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ijci.2021.65578.1044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCI. International Journal of Computers and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijci.2021.65578.1044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析系统中微博数据的预处理和特征提取成为一个有效的分析领域。对象识别、否定表达、讽刺、提纲、拼写错误是情感分析中面临的主要问题。因此,情感分析系统中的数据预处理是提高数据质量,提高有意义数据的提取和分类的决定性步骤。本文提出了一个面向绩效调查的情感分析系统。应用了多种预处理和特征提取技术来优化情感分析。我们的系统包括三个不同的组件:数据预处理、特征提取和情感分析。预处理和特征提取方法提高了情感分析系统的性能。我们使用来自Twitter的美国航空公司数据集来比较不同的情绪分析方法。结果表明,将Word2Vec方法与XGBoost和随机森林分类算法结合使用可以获得较高的性能。同时,结果表明,在分类技术中,朴素贝叶斯是性能最低的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Investigation of Features Extraction and Classification Approaches for Sentiment Analysis Systems
Data pre-processing and feature extraction of micro-blogging data in sentiment analysis systems becomes an effective field of analysis. Object identification, negation expressions, sarcasm, outlines, misspellings are the major issues faced during sentiment analysis. So, data pre-processing in a sentiment analysis system is a conclusive step to improve data quality, raise the extraction, and classification of meaningful data. This paper presents a sentiment analysis system for performance investigation. Several pre-processing and feature extraction techniques are applied to optimize the sentiment analysis. Our system comprises three different components: data pre-processing, feature extraction, and sentiment analysis. The pre-processing and feature extraction approaches enhance the sentiment analysis system performance. We compare between different sentiment analysis approaches using a dataset of US Airlines from Twitter. Results show achieving high performance when using the Word2Vec approach with XGBoost and random forest classification algorithms. Also, the results show the classification technique, Naive Bayes is the lowest performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信