Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault
{"title":"并行和异构架构上的图像处理","authors":"Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault","doi":"10.3166/tsi.31.1183-1203","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier","PeriodicalId":109795,"journal":{"name":"Tech. Sci. Informatiques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Traitement d'images sur architectures parallèles et hétérogènes\",\"authors\":\"Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault\",\"doi\":\"10.3166/tsi.31.1183-1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier\",\"PeriodicalId\":109795,\"journal\":{\"name\":\"Tech. Sci. Informatiques\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tech. Sci. Informatiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/tsi.31.1183-1203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tech. Sci. Informatiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/tsi.31.1183-1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
摘要图像处理算法是计算机视觉相关领域的必要工具。这些算法在处理大量高分辨率图像时,由于计算时间消耗大而受到阻碍。在这项工作中,我们提出了一种开发方案,能够有效地利用并行(GPU)和异构(多cpu /多GPU)平台,以提高图像处理算法的性能。该方案能够有效地调度混合任务和有效地管理异构内存。我们还提出了并行和混合的边角检测方法。实验结果表明,当处理不同的图像集时,与CPU实现相比,全局加速范围在5到25之间。MOTS-CLES:计算异质,GPU,图像处理,检测硬币和轮廓。关键词:异构计算,GPU,图像处理,角与边缘检测。DOI:10.3166/ tsi .31.1183- 1203c 2012拉瓦锡
Traitement d'images sur architectures parallèles et hétérogènes
ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier