并行和异构架构上的图像处理

Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault
{"title":"并行和异构架构上的图像处理","authors":"Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault","doi":"10.3166/tsi.31.1183-1203","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier","PeriodicalId":109795,"journal":{"name":"Tech. Sci. Informatiques","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Traitement d'images sur architectures parallèles et hétérogènes\",\"authors\":\"Sidi Ahmed Mahmoudi, Pierre Manneback, Cédric Augonnet, Samuel Thibault\",\"doi\":\"10.3166/tsi.31.1183-1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier\",\"PeriodicalId\":109795,\"journal\":{\"name\":\"Tech. Sci. Informatiques\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tech. Sci. Informatiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/tsi.31.1183-1203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tech. Sci. Informatiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/tsi.31.1183-1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要图像处理算法是计算机视觉相关领域的必要工具。这些算法在处理大量高分辨率图像时,由于计算时间消耗大而受到阻碍。在这项工作中,我们提出了一种开发方案,能够有效地利用并行(GPU)和异构(多cpu /多GPU)平台,以提高图像处理算法的性能。该方案能够有效地调度混合任务和有效地管理异构内存。我们还提出了并行和混合的边角检测方法。实验结果表明,当处理不同的图像集时,与CPU实现相比,全局加速范围在5到25之间。MOTS-CLES:计算异质,GPU,图像处理,检测硬币和轮廓。关键词:异构计算,GPU,图像处理,角与边缘检测。DOI:10.3166/ tsi .31.1183- 1203c 2012拉瓦锡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traitement d'images sur architectures parallèles et hétérogènes
ABSTRACT. Image processing algorithms present a necessary tool for various domains relatedto computer vision. These algorithms are hampered by their high consumption of computingtimes when processing large sets of high resolution images. In this work, we propose a deve-lopment scheme enabling an efficient exploitation of parallel (GPU) and heterogeneous (Multi-CPU/Multi-GPU) platforms, in order to improve performance of image processing algorithms.The proposed scheme enables an efficient scheduling of hybrid tasks and an effective manage-ment of heterogeneous memories. We present also parallel and hybrid implementations of edgeand corner detection methods. Experimental results showed a global speedup ranging from 5to 25, when processing different sets of images, by comparison with CPU implementations. MOTS-CLES : calcul heterogene, GPU, traitement d’images, detection des coins et contours. KEYWORDS: heterogeneous computing, GPU, image processing, corner and edge detection. DOI:10.3166/TSI.31.1183-1203 c 2012 Lavoisier
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信