关系为“x是y的简单条件”的二元字符串的上半格

A. Muchnik, Andrei E. Romashchenko, A. Shen, N. Vereshchagin
{"title":"关系为“x是y的简单条件”的二元字符串的上半格","authors":"A. Muchnik, Andrei E. Romashchenko, A. Shen, N. Vereshchagin","doi":"10.1109/CCC.1999.766270","DOIUrl":null,"url":null,"abstract":"In this paper we construct a structure R that is a \"finite version\" of the semilattice of Turing degrees. Its elements are strings (technically, sequences of strings) and x/spl les/y means that K(x|)=(conditional Kolmogorov complexity of x relative to y) is small. We construct two elements in R that do not have greatest lower bound. We give a series of examples that show how natural algebraic constructions give two elements that have lower bound O (minimal element) but significant mutual information. (A first example of that kind was constructed by Gacs-Korner (1973) using completely different technique.) We define a notion of \"complexity profile\" of the pair of elements of R and give (exact) upper and lower bounds for it in a particular case.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Upper semilattice of binary strings with the relation \\\"x is simple conditional to y\\\"\",\"authors\":\"A. Muchnik, Andrei E. Romashchenko, A. Shen, N. Vereshchagin\",\"doi\":\"10.1109/CCC.1999.766270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we construct a structure R that is a \\\"finite version\\\" of the semilattice of Turing degrees. Its elements are strings (technically, sequences of strings) and x/spl les/y means that K(x|)=(conditional Kolmogorov complexity of x relative to y) is small. We construct two elements in R that do not have greatest lower bound. We give a series of examples that show how natural algebraic constructions give two elements that have lower bound O (minimal element) but significant mutual information. (A first example of that kind was constructed by Gacs-Korner (1973) using completely different technique.) We define a notion of \\\"complexity profile\\\" of the pair of elements of R and give (exact) upper and lower bounds for it in a particular case.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文构造了一个结构R,它是图灵度半格的“有限版本”。它的元素是字符串(技术上是字符串序列),x/spl les/y意味着K(x|)=(x相对于y的条件Kolmogorov复杂度)很小。我们在R中构造两个没有最大下界的元素。我们给出了一系列的例子,表明自然代数结构如何给出两个具有下界0(最小元素)但重要互信息的元素。(这类的第一个例子是由Gacs-Korner(1973)使用完全不同的技术构建的。)我们定义了R的一对元素的“复杂度轮廓”的概念,并给出了它在特定情况下的(精确的)上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper semilattice of binary strings with the relation "x is simple conditional to y"
In this paper we construct a structure R that is a "finite version" of the semilattice of Turing degrees. Its elements are strings (technically, sequences of strings) and x/spl les/y means that K(x|)=(conditional Kolmogorov complexity of x relative to y) is small. We construct two elements in R that do not have greatest lower bound. We give a series of examples that show how natural algebraic constructions give two elements that have lower bound O (minimal element) but significant mutual information. (A first example of that kind was constructed by Gacs-Korner (1973) using completely different technique.) We define a notion of "complexity profile" of the pair of elements of R and give (exact) upper and lower bounds for it in a particular case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信