视频注释迭代蒸馏与跨颗粒传播的广义多实例学习算法

Feng Kang, M. Naphade
{"title":"视频注释迭代蒸馏与跨颗粒传播的广义多实例学习算法","authors":"Feng Kang, M. Naphade","doi":"10.1109/ICIP.2007.4379128","DOIUrl":null,"url":null,"abstract":"Video annotation is an expensive but necessary task for most vision and learning problems that require building models of visual semantics. This annotation gets prohibitively expensive especially when annotation has to happen at finer grained levels of regions in the videos. One way around the finer grained annotation dilemma is to support annotation at coarser granularity and then propagate this annotation to the finer granularity in a concept-dependent way. In this paper we propose a new generalized multiple instance learning algorithm that can work with any underlying density modeling techniques, and help propagate semantic concepts provided at the coarse granularity of video key-frames to finer grained regions. Our experiments on the NIST TRECVID common annotation corpus reveal improvement in annotation propagation accuracy between 3% to a dramatic 161%.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"9 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations\",\"authors\":\"Feng Kang, M. Naphade\",\"doi\":\"10.1109/ICIP.2007.4379128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video annotation is an expensive but necessary task for most vision and learning problems that require building models of visual semantics. This annotation gets prohibitively expensive especially when annotation has to happen at finer grained levels of regions in the videos. One way around the finer grained annotation dilemma is to support annotation at coarser granularity and then propagate this annotation to the finer granularity in a concept-dependent way. In this paper we propose a new generalized multiple instance learning algorithm that can work with any underlying density modeling techniques, and help propagate semantic concepts provided at the coarse granularity of video key-frames to finer grained regions. Our experiments on the NIST TRECVID common annotation corpus reveal improvement in annotation propagation accuracy between 3% to a dramatic 161%.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"9 18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于大多数需要构建视觉语义模型的视觉和学习问题来说,视频注释是一项昂贵但必要的任务。这种注释的成本非常高,特别是当注释必须在视频中更细粒度的区域级别上进行时。解决细粒度注释困境的一种方法是支持粗粒度的注释,然后以概念相关的方式将此注释传播到更细粒度的注释。在本文中,我们提出了一种新的广义多实例学习算法,该算法可以与任何底层密度建模技术一起工作,并有助于将视频关键帧粗粒度提供的语义概念传播到细粒度区域。我们在NIST TRECVID公共标注语料库上的实验表明,标注传播准确率在3%到161%之间显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Multiple Instance Learning Algorithm for Iterative Distillation and Cross-Granular Propagation of Video Annotations
Video annotation is an expensive but necessary task for most vision and learning problems that require building models of visual semantics. This annotation gets prohibitively expensive especially when annotation has to happen at finer grained levels of regions in the videos. One way around the finer grained annotation dilemma is to support annotation at coarser granularity and then propagate this annotation to the finer granularity in a concept-dependent way. In this paper we propose a new generalized multiple instance learning algorithm that can work with any underlying density modeling techniques, and help propagate semantic concepts provided at the coarse granularity of video key-frames to finer grained regions. Our experiments on the NIST TRECVID common annotation corpus reveal improvement in annotation propagation accuracy between 3% to a dramatic 161%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信