探索机器学习研究中的超参数使用和调优

Sebastian Simon, Nikolay Kolyada, Christopher Akiki, Martin Potthast, Benno Stein, Norbert Siegmund
{"title":"探索机器学习研究中的超参数使用和调优","authors":"Sebastian Simon, Nikolay Kolyada, Christopher Akiki, Martin Potthast, Benno Stein, Norbert Siegmund","doi":"10.1109/CAIN58948.2023.00016","DOIUrl":null,"url":null,"abstract":"The success of machine learning (ML) models depends on careful experimentation and optimization of their hyperparameters. Tuning can affect the reliability and accuracy of a trained model and is the subject of ongoing research. However, little is known on whether and how hyperparameters are used and optimized in research practice. This lack of knowledge not only limits the adoption of best practices for tuning in research, but also affects the reproducibility of published results. Our research systematically analyzes the use and tuning of hyperparameters in ML publications. For this, we analyze 2000 code repositories and their associated research papers from Papers with Code. We compare the use and tuning of hyperparameters of three widely used ML libraries: scikit-learn, TensorFlow, and PyTorch. Our results show that the most of the available hyperparameters remain untouched, and those that have been changed use constant values. In particular, there is a significant difference between tuning hyperparameters and the reporting about it in the corresponding research papers. Our results suggest that there is a need for improved research and reporting practices when using ML methods to improve the reproducibility of published results.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Hyperparameter Usage and Tuning in Machine Learning Research\",\"authors\":\"Sebastian Simon, Nikolay Kolyada, Christopher Akiki, Martin Potthast, Benno Stein, Norbert Siegmund\",\"doi\":\"10.1109/CAIN58948.2023.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of machine learning (ML) models depends on careful experimentation and optimization of their hyperparameters. Tuning can affect the reliability and accuracy of a trained model and is the subject of ongoing research. However, little is known on whether and how hyperparameters are used and optimized in research practice. This lack of knowledge not only limits the adoption of best practices for tuning in research, but also affects the reproducibility of published results. Our research systematically analyzes the use and tuning of hyperparameters in ML publications. For this, we analyze 2000 code repositories and their associated research papers from Papers with Code. We compare the use and tuning of hyperparameters of three widely used ML libraries: scikit-learn, TensorFlow, and PyTorch. Our results show that the most of the available hyperparameters remain untouched, and those that have been changed use constant values. In particular, there is a significant difference between tuning hyperparameters and the reporting about it in the corresponding research papers. Our results suggest that there is a need for improved research and reporting practices when using ML methods to improve the reproducibility of published results.\",\"PeriodicalId\":175580,\"journal\":{\"name\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIN58948.2023.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)模型的成功取决于对其超参数的仔细实验和优化。调优会影响训练模型的可靠性和准确性,是正在进行的研究的主题。然而,在研究实践中是否以及如何使用和优化超参数却知之甚少。这种知识的缺乏不仅限制了在研究中调整最佳实践的采用,而且还影响了已发表结果的可重复性。我们的研究系统地分析了机器学习出版物中超参数的使用和调优。为此,我们分析了2000个代码库及其相关的研究论文,这些论文来自论文与代码。我们比较了三个广泛使用的ML库的超参数的使用和调优:scikit-learn, TensorFlow和PyTorch。我们的结果表明,大多数可用的超参数保持不变,而那些已经改变的超参数使用常数值。特别是调优超参数与相关研究论文的报道存在显著差异。我们的研究结果表明,在使用机器学习方法来提高已发表结果的可重复性时,需要改进研究和报告实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Hyperparameter Usage and Tuning in Machine Learning Research
The success of machine learning (ML) models depends on careful experimentation and optimization of their hyperparameters. Tuning can affect the reliability and accuracy of a trained model and is the subject of ongoing research. However, little is known on whether and how hyperparameters are used and optimized in research practice. This lack of knowledge not only limits the adoption of best practices for tuning in research, but also affects the reproducibility of published results. Our research systematically analyzes the use and tuning of hyperparameters in ML publications. For this, we analyze 2000 code repositories and their associated research papers from Papers with Code. We compare the use and tuning of hyperparameters of three widely used ML libraries: scikit-learn, TensorFlow, and PyTorch. Our results show that the most of the available hyperparameters remain untouched, and those that have been changed use constant values. In particular, there is a significant difference between tuning hyperparameters and the reporting about it in the corresponding research papers. Our results suggest that there is a need for improved research and reporting practices when using ML methods to improve the reproducibility of published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信