多维荧光显微数据的快速haar -小波去噪

F. Luisier, C. Vonesch, T. Blu, M. Unser
{"title":"多维荧光显微数据的快速haar -小波去噪","authors":"F. Luisier, C. Vonesch, T. Blu, M. Unser","doi":"10.1109/ISBI.2009.5193046","DOIUrl":null,"url":null,"abstract":"We propose a novel denoising algorithm to reduce the Poisson noise that is typically dominant in fluorescence microscopy data. To process large datasets at a low computational cost, we use the unnormalized Haar wavelet transform. Thanks to some of its appealing properties, independent unbiased MSE estimates can be derived for each subband. Based on these Poisson unbiased MSE estimates, we then optimize linearly parametrized interscale thresholding. Correlations between adjacent images of the multidimensional data are accounted for through a sliding window approach. Experiments on simulated and real data show that the proposed solution is qualitatively similar to a state-of-the-art multiscale method, while being orders of magnitude faster.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Fast Haar-wavelet denoising of multidimensional fluorescence microscopy data\",\"authors\":\"F. Luisier, C. Vonesch, T. Blu, M. Unser\",\"doi\":\"10.1109/ISBI.2009.5193046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel denoising algorithm to reduce the Poisson noise that is typically dominant in fluorescence microscopy data. To process large datasets at a low computational cost, we use the unnormalized Haar wavelet transform. Thanks to some of its appealing properties, independent unbiased MSE estimates can be derived for each subband. Based on these Poisson unbiased MSE estimates, we then optimize linearly parametrized interscale thresholding. Correlations between adjacent images of the multidimensional data are accounted for through a sliding window approach. Experiments on simulated and real data show that the proposed solution is qualitatively similar to a state-of-the-art multiscale method, while being orders of magnitude faster.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们提出了一种新的去噪算法,以减少在荧光显微镜数据中通常占主导地位的泊松噪声。为了以较低的计算成本处理大型数据集,我们使用了非归一化Haar小波变换。由于它的一些吸引人的性质,独立的无偏MSE估计可以得到每个子带。基于这些泊松无偏MSE估计,我们然后优化线性参数化尺度间阈值。多维数据的相邻图像之间的相关性是通过滑动窗口方法计算的。在模拟和实际数据上的实验表明,该方法在定性上与目前最先进的多尺度方法相似,但速度要快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Haar-wavelet denoising of multidimensional fluorescence microscopy data
We propose a novel denoising algorithm to reduce the Poisson noise that is typically dominant in fluorescence microscopy data. To process large datasets at a low computational cost, we use the unnormalized Haar wavelet transform. Thanks to some of its appealing properties, independent unbiased MSE estimates can be derived for each subband. Based on these Poisson unbiased MSE estimates, we then optimize linearly parametrized interscale thresholding. Correlations between adjacent images of the multidimensional data are accounted for through a sliding window approach. Experiments on simulated and real data show that the proposed solution is qualitatively similar to a state-of-the-art multiscale method, while being orders of magnitude faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信