关于某些多项式的零点的位置

S. Bairagi, V. K. Jain, T. K. Mishra, L. Saha
{"title":"关于某些多项式的零点的位置","authors":"S. Bairagi, V. K. Jain, T. K. Mishra, L. Saha","doi":"10.2298/pim1613287b","DOIUrl":null,"url":null,"abstract":"We extend Aziz and Mohammad’s result that the zeros, of a polynomial P(z) =Σn \n j=0 ajzj, taj ≥ aj−1 > 0, j=2,3,...,n for certain t(>0), with moduli greater \n than t(n−1)/n are simple, to polynomials with complex coefficients. Then we \n improve their result that the polynomial P(z), of degree n, with complex \n coefficients, does not vanish in the disc |z−aeiα| 0, max |z|=a \n |P(z)| = |P(aeiα)|, for r < a < 2,r being the greatest positive root of the \n equation xn−2xn−1+1=0, and finally obtained an upper bound, for moduli of all \n zeros of a polynomial,(better, in many cases, than those obtainable from many \n other known results).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the location of the zeros of certain polynomials\",\"authors\":\"S. Bairagi, V. K. Jain, T. K. Mishra, L. Saha\",\"doi\":\"10.2298/pim1613287b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend Aziz and Mohammad’s result that the zeros, of a polynomial P(z) =Σn \\n j=0 ajzj, taj ≥ aj−1 > 0, j=2,3,...,n for certain t(>0), with moduli greater \\n than t(n−1)/n are simple, to polynomials with complex coefficients. Then we \\n improve their result that the polynomial P(z), of degree n, with complex \\n coefficients, does not vanish in the disc |z−aeiα| 0, max |z|=a \\n |P(z)| = |P(aeiα)|, for r < a < 2,r being the greatest positive root of the \\n equation xn−2xn−1+1=0, and finally obtained an upper bound, for moduli of all \\n zeros of a polynomial,(better, in many cases, than those obtainable from many \\n other known results).\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/pim1613287b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/pim1613287b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推广了Aziz和Mohammad的结论,即多项式P(z) =Σn j=0 ajzj, taj≥aj−1 > 0,j=2,3,…,对于一定t(>0),且模大于t(n−1)/n的多项式为简单多项式,为复系数多项式。然后我们改进了他们的结果,即n次复系数多项式P(z)在圆上不消失,max |z|=a |P(z)| = |P(aeiα)|,当r < a < 2时,r是方程xn−2xn−1+1=0的最大正根,并最终得到了多项式所有零的模的上界(在许多情况下,比许多其他已知结果更好)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the location of the zeros of certain polynomials
We extend Aziz and Mohammad’s result that the zeros, of a polynomial P(z) =Σn j=0 ajzj, taj ≥ aj−1 > 0, j=2,3,...,n for certain t(>0), with moduli greater than t(n−1)/n are simple, to polynomials with complex coefficients. Then we improve their result that the polynomial P(z), of degree n, with complex coefficients, does not vanish in the disc |z−aeiα| 0, max |z|=a |P(z)| = |P(aeiα)|, for r < a < 2,r being the greatest positive root of the equation xn−2xn−1+1=0, and finally obtained an upper bound, for moduli of all zeros of a polynomial,(better, in many cases, than those obtainable from many other known results).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信