基于深度学习的木薯叶病检测

Manick, J. Srivastava
{"title":"基于深度学习的木薯叶病检测","authors":"Manick, J. Srivastava","doi":"10.1109/iemtronics55184.2022.9795751","DOIUrl":null,"url":null,"abstract":"In this study, a clever plan to detect cassava leaves has been developed using a customized fine-tuned deep learning model. Five categories of diseases are used in this study: Cassava Brown Steak Disease (CBSD), Cassava Green Mite (CGM), Cassava Bacterial Blight (CBB), and Cassava Mosaic Disease (CMD) and Health. The results showed an accuracy on the test data obtained was over 77% on original problem using clever data augmentation without affecting the scope of this problem.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cassava Leaf Disease Detection Using Deep Learning\",\"authors\":\"Manick, J. Srivastava\",\"doi\":\"10.1109/iemtronics55184.2022.9795751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a clever plan to detect cassava leaves has been developed using a customized fine-tuned deep learning model. Five categories of diseases are used in this study: Cassava Brown Steak Disease (CBSD), Cassava Green Mite (CGM), Cassava Bacterial Blight (CBB), and Cassava Mosaic Disease (CMD) and Health. The results showed an accuracy on the test data obtained was over 77% on original problem using clever data augmentation without affecting the scope of this problem.\",\"PeriodicalId\":442879,\"journal\":{\"name\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemtronics55184.2022.9795751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,使用定制的微调深度学习模型开发了一个检测木薯叶子的聪明计划。本研究使用了五类疾病:木薯褐牛排病(CBSD)、木薯绿螨病(CGM)、木薯细菌性枯萎病(CBB)和木薯花叶病(CMD)与健康。结果表明,在不影响问题范围的情况下,对原始问题使用智能数据增强获得的测试数据的准确性超过77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cassava Leaf Disease Detection Using Deep Learning
In this study, a clever plan to detect cassava leaves has been developed using a customized fine-tuned deep learning model. Five categories of diseases are used in this study: Cassava Brown Steak Disease (CBSD), Cassava Green Mite (CGM), Cassava Bacterial Blight (CBB), and Cassava Mosaic Disease (CMD) and Health. The results showed an accuracy on the test data obtained was over 77% on original problem using clever data augmentation without affecting the scope of this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信