基于时间序列Sentinel-1和Sentinel-2影像的新疆异质耕地棉花田制图

Luyi Sun, Jinsong Chen, Yu Han
{"title":"基于时间序列Sentinel-1和Sentinel-2影像的新疆异质耕地棉花田制图","authors":"Luyi Sun, Jinsong Chen, Yu Han","doi":"10.1109/Agro-Geoinformatics.2019.8820699","DOIUrl":null,"url":null,"abstract":"Cotton is an important crop playing a key role in both economy and regional environment. In recent years, remote sensing has become the most feasible tool of crop field mapping in large-scale. This study evaluates the feature fusion of time series Sentinel-1 (S1) and Sentienl-2 (S2) data for cotton filed mapping in heterogeneous smallholder agricultural systems in Xinjiang, China. A SHP (Statistically Homogeneous Pixel) algorithm originally used for identification of distributed scatterers in Interferometric Synthetic Aperture Radar (InSAR) applications was implemented in de-speckling of SAR intensities. A semi-automated approach based on Jeffries-Matusita (J-M) distance and Recursive Feature Elimination (RFE) algorithm was used to select optimal combination of SAR or/and optical features in the cotton field mapping to achieve highest accuracy. In experiments, we demonstrated that feature fusion of Sentinel-1&2 is able to improve the cotton mapping accuracy.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint use of time series Sentinel-1 and Sentinel-2 imagery for cotton field mapping in heterogeneous cultivated areas of Xinjiang, China\",\"authors\":\"Luyi Sun, Jinsong Chen, Yu Han\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cotton is an important crop playing a key role in both economy and regional environment. In recent years, remote sensing has become the most feasible tool of crop field mapping in large-scale. This study evaluates the feature fusion of time series Sentinel-1 (S1) and Sentienl-2 (S2) data for cotton filed mapping in heterogeneous smallholder agricultural systems in Xinjiang, China. A SHP (Statistically Homogeneous Pixel) algorithm originally used for identification of distributed scatterers in Interferometric Synthetic Aperture Radar (InSAR) applications was implemented in de-speckling of SAR intensities. A semi-automated approach based on Jeffries-Matusita (J-M) distance and Recursive Feature Elimination (RFE) algorithm was used to select optimal combination of SAR or/and optical features in the cotton field mapping to achieve highest accuracy. In experiments, we demonstrated that feature fusion of Sentinel-1&2 is able to improve the cotton mapping accuracy.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

棉花是一种重要的作物,在经济和区域环境中都起着关键作用。近年来,遥感已成为大规模农田制图最可行的工具。利用Sentinel-1 (S1)和sentinel -2 (S2)时间序列数据融合特征,对新疆异质小农系统棉花田制图进行了评价。最初用于识别干涉合成孔径雷达(InSAR)应用中的分布式散射体的SHP(统计均匀像素)算法被应用于SAR强度的去斑。采用基于Jeffries-Matusita (J-M)距离和递归特征消除(RFE)算法的半自动化方法,选择最优的SAR或/和光学特征组合进行棉花田测绘,以达到最高的精度。在实验中,我们证明了Sentinel-1&2的特征融合能够提高棉花制图的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint use of time series Sentinel-1 and Sentinel-2 imagery for cotton field mapping in heterogeneous cultivated areas of Xinjiang, China
Cotton is an important crop playing a key role in both economy and regional environment. In recent years, remote sensing has become the most feasible tool of crop field mapping in large-scale. This study evaluates the feature fusion of time series Sentinel-1 (S1) and Sentienl-2 (S2) data for cotton filed mapping in heterogeneous smallholder agricultural systems in Xinjiang, China. A SHP (Statistically Homogeneous Pixel) algorithm originally used for identification of distributed scatterers in Interferometric Synthetic Aperture Radar (InSAR) applications was implemented in de-speckling of SAR intensities. A semi-automated approach based on Jeffries-Matusita (J-M) distance and Recursive Feature Elimination (RFE) algorithm was used to select optimal combination of SAR or/and optical features in the cotton field mapping to achieve highest accuracy. In experiments, we demonstrated that feature fusion of Sentinel-1&2 is able to improve the cotton mapping accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信