一种用于特征提取和人脸识别的广义核Fisher判别框架

Yuexiang Shi, Xiaoxue Ren, Saizhou Yang, Ping Gong
{"title":"一种用于特征提取和人脸识别的广义核Fisher判别框架","authors":"Yuexiang Shi, Xiaoxue Ren, Saizhou Yang, Ping Gong","doi":"10.1109/FSKD.2016.7603396","DOIUrl":null,"url":null,"abstract":"In this paper, an improved Kernel Fisher Discriminant (KFD) method is used in face recognition. A Generalized Kernel Fisher Discriminant Analysis (GKFD) is proposed to make the most of two kinds of discriminant information in “double discriminant subspaces”. It can also uniform the discriminant functions in two subspaces of DSDA. Experimental results on ORL face database show the feasibility of the suggested method.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A generalized Kernel Fisher Discriminant framework used for feature extraction and face recognition\",\"authors\":\"Yuexiang Shi, Xiaoxue Ren, Saizhou Yang, Ping Gong\",\"doi\":\"10.1109/FSKD.2016.7603396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved Kernel Fisher Discriminant (KFD) method is used in face recognition. A Generalized Kernel Fisher Discriminant Analysis (GKFD) is proposed to make the most of two kinds of discriminant information in “double discriminant subspaces”. It can also uniform the discriminant functions in two subspaces of DSDA. Experimental results on ORL face database show the feasibility of the suggested method.\",\"PeriodicalId\":373155,\"journal\":{\"name\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2016.7603396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文将改进的核费雪判别法(KFD)应用于人脸识别。为了最大限度地利用“双判别子空间”中的两类判别信息,提出了一种广义核Fisher判别分析方法。它还可以统一DSDA的两个子空间中的判别函数。在ORL人脸数据库上的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Kernel Fisher Discriminant framework used for feature extraction and face recognition
In this paper, an improved Kernel Fisher Discriminant (KFD) method is used in face recognition. A Generalized Kernel Fisher Discriminant Analysis (GKFD) is proposed to make the most of two kinds of discriminant information in “double discriminant subspaces”. It can also uniform the discriminant functions in two subspaces of DSDA. Experimental results on ORL face database show the feasibility of the suggested method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信