Stamatis Karlos, Nikos Fazakis, Konstantinos Kaleris, V. G. Kanas, S. Kotsiantis
{"title":"An incremental self-trained ensemble algorithm","authors":"Stamatis Karlos, Nikos Fazakis, Konstantinos Kaleris, V. G. Kanas, S. Kotsiantis","doi":"10.1109/EAIS.2018.8397180","DOIUrl":null,"url":null,"abstract":"Incremental learning has boosted the speed of Data Mining algorithms without sacrificing much, or sometimes none, predictive accuracy. Instead, by saving computational resources, combination of such kind of algorithms with iterative procedures that improve the learned hypothesis utilizing vast amounts of available unlabeled data could be achieved efficiently, in contrast to supervised scenario where all this information is rejected because no exploitation mechanism exists. The scope of this work is to examine the ability of a learning scheme that operates under shortage of labeled data for classification tasks, based on an incrementally updated ensemble algorithm. Comparisons against 30 state-of-the art Semi-supervised methods over 50 publicly available datasets are provided, supporting our assumptions about the learning quality of the proposed algorithm.","PeriodicalId":368737,"journal":{"name":"2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2018.8397180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增量学习提高了数据挖掘算法的速度,而没有牺牲太多,有时甚至没有牺牲预测的准确性。相反,通过节省计算资源,这种算法与迭代过程的结合可以有效地实现,这些迭代过程可以利用大量可用的未标记数据来改进学习假设,而不是因为没有开发机制而拒绝所有这些信息的监督场景。这项工作的范围是基于增量更新的集成算法,检查在标记数据短缺的情况下进行分类任务的学习方案的能力。与30种最先进的半监督方法在50个公开可用的数据集上进行比较,支持我们对所提出算法的学习质量的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An incremental self-trained ensemble algorithm
Incremental learning has boosted the speed of Data Mining algorithms without sacrificing much, or sometimes none, predictive accuracy. Instead, by saving computational resources, combination of such kind of algorithms with iterative procedures that improve the learned hypothesis utilizing vast amounts of available unlabeled data could be achieved efficiently, in contrast to supervised scenario where all this information is rejected because no exploitation mechanism exists. The scope of this work is to examine the ability of a learning scheme that operates under shortage of labeled data for classification tasks, based on an incrementally updated ensemble algorithm. Comparisons against 30 state-of-the art Semi-supervised methods over 50 publicly available datasets are provided, supporting our assumptions about the learning quality of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信