医学图像分割的模糊进化算法

Amrane Leila, Moussaoui Abdelouahab
{"title":"医学图像分割的模糊进化算法","authors":"Amrane Leila, Moussaoui Abdelouahab","doi":"10.1109/ICITES.2012.6216659","DOIUrl":null,"url":null,"abstract":"An unsupervised fuzzy clustering technique, fuzzy c-means (FCM) clustering algorithm has been widely used in image segmentation. However, the FCM algorithm always converges to strict local minima, starting from an initial guess of the membership degrees. To overcome this limitation of FCM algorithm, a fuzzy evolutional c-mean (FECM) algorithm is presented in this paper. We combine the classical FCM with an evolutional algorithm and we introduce the sharing operator for taking into account the spatial information.","PeriodicalId":137864,"journal":{"name":"2012 International Conference on Information Technology and e-Services","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy evolutionary algorithm for medical image segmentation\",\"authors\":\"Amrane Leila, Moussaoui Abdelouahab\",\"doi\":\"10.1109/ICITES.2012.6216659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unsupervised fuzzy clustering technique, fuzzy c-means (FCM) clustering algorithm has been widely used in image segmentation. However, the FCM algorithm always converges to strict local minima, starting from an initial guess of the membership degrees. To overcome this limitation of FCM algorithm, a fuzzy evolutional c-mean (FECM) algorithm is presented in this paper. We combine the classical FCM with an evolutional algorithm and we introduce the sharing operator for taking into account the spatial information.\",\"PeriodicalId\":137864,\"journal\":{\"name\":\"2012 International Conference on Information Technology and e-Services\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Technology and e-Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITES.2012.6216659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Technology and e-Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITES.2012.6216659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊c均值聚类算法是一种无监督模糊聚类技术,在图像分割中得到了广泛的应用。然而,FCM算法总是收敛于严格的局部最小值,从对隶属度的初始猜测开始。为了克服FCM算法的这一局限性,本文提出了一种模糊进化c均值(FECM)算法。我们将经典的FCM与一种进化算法相结合,并引入了考虑空间信息的共享算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy evolutionary algorithm for medical image segmentation
An unsupervised fuzzy clustering technique, fuzzy c-means (FCM) clustering algorithm has been widely used in image segmentation. However, the FCM algorithm always converges to strict local minima, starting from an initial guess of the membership degrees. To overcome this limitation of FCM algorithm, a fuzzy evolutional c-mean (FECM) algorithm is presented in this paper. We combine the classical FCM with an evolutional algorithm and we introduce the sharing operator for taking into account the spatial information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信