{"title":"曲线模空间的非多面体有效锥","authors":"S. Mullane","doi":"10.1090/TRAN/8365","DOIUrl":null,"url":null,"abstract":"We show that the pseudoeffective cone of divisors $\\overline{\\text{Eff}}^1(\\overline{\\mathcal{M}}_{g,n})$ for $g\\geq 2$ and $n\\geq 2$ is not polyhedral by showing that the class of the fibre of the morphism forgetting one point forms an extremal round edge of the dual nef cone of curves $\\overline{\\text{Nef}}_1(\\overline{\\mathcal{M}}_{g,n})$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-polyhedral effective cones from the moduli space of curves\",\"authors\":\"S. Mullane\",\"doi\":\"10.1090/TRAN/8365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the pseudoeffective cone of divisors $\\\\overline{\\\\text{Eff}}^1(\\\\overline{\\\\mathcal{M}}_{g,n})$ for $g\\\\geq 2$ and $n\\\\geq 2$ is not polyhedral by showing that the class of the fibre of the morphism forgetting one point forms an extremal round edge of the dual nef cone of curves $\\\\overline{\\\\text{Nef}}_1(\\\\overline{\\\\mathcal{M}}_{g,n})$.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TRAN/8365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TRAN/8365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-polyhedral effective cones from the moduli space of curves
We show that the pseudoeffective cone of divisors $\overline{\text{Eff}}^1(\overline{\mathcal{M}}_{g,n})$ for $g\geq 2$ and $n\geq 2$ is not polyhedral by showing that the class of the fibre of the morphism forgetting one point forms an extremal round edge of the dual nef cone of curves $\overline{\text{Nef}}_1(\overline{\mathcal{M}}_{g,n})$.