{"title":"基于复合定理的差分隐私在线学习","authors":"Pinru Jiang, Shizhong Liao","doi":"10.1109/ICEIEC49280.2020.9152303","DOIUrl":null,"url":null,"abstract":"Privacy protection is becoming more and more important in the era of big data. Differential privacy is a rigorous and provable privacy protection method that can protect privacy for a single piece of data. But existing differential privacy online learning methods have great limitations in the scope of application and accuracy. Aiming at this problem, we propose a more general and accurate algorithm, named DPOL-CT, for differential privacy online learning. We first distinguish the difference in differential privacy protection between offline learning and online learning. Then we prove that the DPOL-CT algorithm achieves (∊, δ)-differential privacy for online learning under the Gaussian, the Laplace and the Staircase mechanisms and enjoys a sublinear expected regret bound. We further discuss the trade-off between the differential privacy level and the regret bound. Theoretical analysis and experimental results show that the DPOL-CT algorithm has good performance guarantees.","PeriodicalId":352285,"journal":{"name":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Privacy Online Learning Based on the Composition Theorem\",\"authors\":\"Pinru Jiang, Shizhong Liao\",\"doi\":\"10.1109/ICEIEC49280.2020.9152303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy protection is becoming more and more important in the era of big data. Differential privacy is a rigorous and provable privacy protection method that can protect privacy for a single piece of data. But existing differential privacy online learning methods have great limitations in the scope of application and accuracy. Aiming at this problem, we propose a more general and accurate algorithm, named DPOL-CT, for differential privacy online learning. We first distinguish the difference in differential privacy protection between offline learning and online learning. Then we prove that the DPOL-CT algorithm achieves (∊, δ)-differential privacy for online learning under the Gaussian, the Laplace and the Staircase mechanisms and enjoys a sublinear expected regret bound. We further discuss the trade-off between the differential privacy level and the regret bound. Theoretical analysis and experimental results show that the DPOL-CT algorithm has good performance guarantees.\",\"PeriodicalId\":352285,\"journal\":{\"name\":\"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIEC49280.2020.9152303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC49280.2020.9152303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Privacy Online Learning Based on the Composition Theorem
Privacy protection is becoming more and more important in the era of big data. Differential privacy is a rigorous and provable privacy protection method that can protect privacy for a single piece of data. But existing differential privacy online learning methods have great limitations in the scope of application and accuracy. Aiming at this problem, we propose a more general and accurate algorithm, named DPOL-CT, for differential privacy online learning. We first distinguish the difference in differential privacy protection between offline learning and online learning. Then we prove that the DPOL-CT algorithm achieves (∊, δ)-differential privacy for online learning under the Gaussian, the Laplace and the Staircase mechanisms and enjoys a sublinear expected regret bound. We further discuss the trade-off between the differential privacy level and the regret bound. Theoretical analysis and experimental results show that the DPOL-CT algorithm has good performance guarantees.