亚特兰大油田:在具有挑战性的环境中建造长水平井

C. Pedroso, J. Salies, R. Aguiar, Daniel G Lemos, Rafael Kenupp, P. Oliveira, W. A. Costa, Robson Soares, C. Cova, A. Tocchetto, Bruno Simoes, M. Nunes
{"title":"亚特兰大油田:在具有挑战性的环境中建造长水平井","authors":"C. Pedroso, J. Salies, R. Aguiar, Daniel G Lemos, Rafael Kenupp, P. Oliveira, W. A. Costa, Robson Soares, C. Cova, A. Tocchetto, Bruno Simoes, M. Nunes","doi":"10.4043/29757-ms","DOIUrl":null,"url":null,"abstract":"\n Atlanta is a post-salt oil field located offshore Brazil in the Santos Basin, 150 km southeast of Rio de Janeiro. The combination of ultra-deep water (1550m), heavy and viscous oil (14 API), unconsolidated sandstones, low overburden (800m), faulted reservoir rock, etc., composes a unique and challenging scenario for which the remarkable solutions applied have been already detailed (Marsili et al. 2015; Pedroso et al. 2017; Monteiro et al. 2015; Pedroso et al. 2015; Rausis et al. 2015; Pedroso et al. 2015).\n The Atlanta field project was planned to be developed in two phases: the Early Production System (EPS) with three production wells, and the Definitive Production System (DPS) with up to nine wells. No injection wells have been planned.\n In 2013 and 2014 the first two wells, here called ATL-2 and ATL-3 (ATL-1 was a pilot well), were successfully drilled, completed, and tested as described in the above references. In May 2018, they started production. After almost one year and 5,000,000 bbl of produced oil, the third EPS well was constructed.\n The lessons learned in each phase of the well construction - drilling, lower completion, and upper completion - were applied in the third well, repeating the good operational performance. An analysis of this comparative performance is presented.\n Technology improvements were implemented, such as the use of autonomous inflow control devices (AICD), the use of micro-tortuosity logging to better position the electrical submersible pump (ESP), the use of an annulus diverter valve (ADV) to avoid the pressure drop across the ESP in case of failure, etc.\n The result was a well constructed ahead the planned time with a Productivity Index (PI) that exceeded expectations.","PeriodicalId":415055,"journal":{"name":"Day 1 Tue, October 29, 2019","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Atlanta Field: Constructing Long Horizontal Wells in a Challenging Environment\",\"authors\":\"C. Pedroso, J. Salies, R. Aguiar, Daniel G Lemos, Rafael Kenupp, P. Oliveira, W. A. Costa, Robson Soares, C. Cova, A. Tocchetto, Bruno Simoes, M. Nunes\",\"doi\":\"10.4043/29757-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Atlanta is a post-salt oil field located offshore Brazil in the Santos Basin, 150 km southeast of Rio de Janeiro. The combination of ultra-deep water (1550m), heavy and viscous oil (14 API), unconsolidated sandstones, low overburden (800m), faulted reservoir rock, etc., composes a unique and challenging scenario for which the remarkable solutions applied have been already detailed (Marsili et al. 2015; Pedroso et al. 2017; Monteiro et al. 2015; Pedroso et al. 2015; Rausis et al. 2015; Pedroso et al. 2015).\\n The Atlanta field project was planned to be developed in two phases: the Early Production System (EPS) with three production wells, and the Definitive Production System (DPS) with up to nine wells. No injection wells have been planned.\\n In 2013 and 2014 the first two wells, here called ATL-2 and ATL-3 (ATL-1 was a pilot well), were successfully drilled, completed, and tested as described in the above references. In May 2018, they started production. After almost one year and 5,000,000 bbl of produced oil, the third EPS well was constructed.\\n The lessons learned in each phase of the well construction - drilling, lower completion, and upper completion - were applied in the third well, repeating the good operational performance. An analysis of this comparative performance is presented.\\n Technology improvements were implemented, such as the use of autonomous inflow control devices (AICD), the use of micro-tortuosity logging to better position the electrical submersible pump (ESP), the use of an annulus diverter valve (ADV) to avoid the pressure drop across the ESP in case of failure, etc.\\n The result was a well constructed ahead the planned time with a Productivity Index (PI) that exceeded expectations.\",\"PeriodicalId\":415055,\"journal\":{\"name\":\"Day 1 Tue, October 29, 2019\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 29, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29757-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 29, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29757-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

亚特兰大是一个盐后油田,位于巴西近海桑托斯盆地,里约热内卢东南150公里处。超深水(1550m)、稠油和稠油(14api)、松散砂岩、低覆盖层(800m)、断层储层岩石等组合构成了一个独特而具有挑战性的场景,已经详细介绍了应用的卓越解决方案(Marsili et al. 2015;Pedroso et al. 2017;Monteiro et al. 2015;Pedroso et al. 2015;Rausis et al. 2015;Pedroso et al. 2015)。亚特兰大油田项目计划分两个阶段进行开发:包括3口生产井的早期生产系统(EPS)和多达9口井的最终生产系统(DPS)。没有计划注入井。2013年和2014年,前两口井ATL-2和ATL-3 (ATL-1为试验井)成功钻完井并进行了测试。2018年5月,它们开始生产。经过近一年的开采,生产了500万桶石油,第三口EPS井建成。在钻井、下完井和上完井的各个阶段吸取的经验教训被应用到第三口井中,重复了良好的作业效果。本文对这种比较性能进行了分析。随后进行了技术改进,例如使用自主流入控制装置(AICD),使用微弯曲度测井来更好地定位电潜泵(ESP),使用环空分流阀(ADV)来避免ESP发生故障时的压降等。结果是在计划时间之前构建了一口井,其生产力指数(PI)超出了预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atlanta Field: Constructing Long Horizontal Wells in a Challenging Environment
Atlanta is a post-salt oil field located offshore Brazil in the Santos Basin, 150 km southeast of Rio de Janeiro. The combination of ultra-deep water (1550m), heavy and viscous oil (14 API), unconsolidated sandstones, low overburden (800m), faulted reservoir rock, etc., composes a unique and challenging scenario for which the remarkable solutions applied have been already detailed (Marsili et al. 2015; Pedroso et al. 2017; Monteiro et al. 2015; Pedroso et al. 2015; Rausis et al. 2015; Pedroso et al. 2015). The Atlanta field project was planned to be developed in two phases: the Early Production System (EPS) with three production wells, and the Definitive Production System (DPS) with up to nine wells. No injection wells have been planned. In 2013 and 2014 the first two wells, here called ATL-2 and ATL-3 (ATL-1 was a pilot well), were successfully drilled, completed, and tested as described in the above references. In May 2018, they started production. After almost one year and 5,000,000 bbl of produced oil, the third EPS well was constructed. The lessons learned in each phase of the well construction - drilling, lower completion, and upper completion - were applied in the third well, repeating the good operational performance. An analysis of this comparative performance is presented. Technology improvements were implemented, such as the use of autonomous inflow control devices (AICD), the use of micro-tortuosity logging to better position the electrical submersible pump (ESP), the use of an annulus diverter valve (ADV) to avoid the pressure drop across the ESP in case of failure, etc. The result was a well constructed ahead the planned time with a Productivity Index (PI) that exceeded expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信