{"title":"研究与开发随机控制模型的数值算法","authors":"C. Leung, Y. Kwok","doi":"10.21314/JCF.2014.282","DOIUrl":null,"url":null,"abstract":"We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Algorithms for Research and Development Stochastic Control Models\",\"authors\":\"C. Leung, Y. Kwok\",\"doi\":\"10.21314/JCF.2014.282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2014.282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JCF.2014.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Algorithms for Research and Development Stochastic Control Models
We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.