研究与开发随机控制模型的数值算法

C. Leung, Y. Kwok
{"title":"研究与开发随机控制模型的数值算法","authors":"C. Leung, Y. Kwok","doi":"10.21314/JCF.2014.282","DOIUrl":null,"url":null,"abstract":"We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Algorithms for Research and Development Stochastic Control Models\",\"authors\":\"C. Leung, Y. Kwok\",\"doi\":\"10.21314/JCF.2014.282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21314/JCF.2014.282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JCF.2014.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了一家从事研发的企业为开发一种即将上市的创新产品所采取的最优研发支出策略。企业面临着与研发成功相关的技术不确定性和新产品产生的随机收入流相关的市场不确定性。我们的模型与大多数研发模型不同,假设企业的知识积累对研发过程有影响,因此研发成功到达的风险率不再是无记忆的。此外,我们假设产品所依赖的技术的生命周期是有限的。本文提出了求解Hamilton-Jacobi-Bellman有限时间R&D随机控制模型的有效有限差分格式,该模型具有R&D支出的最优控制和R&D努力放弃的最优停止规则。分析了不同模型参数组下研发支出的最优策略。特别是,我们观察到研发支出随着企业知识储备的增加而减少,当积累水平足够高时,甚至可能降至零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Algorithms for Research and Development Stochastic Control Models
We consider the optimal strategy of research and development (R&D) expenditure adopted by a firm that engages in R&D to develop an innovative product to be launched in the market. The firm faces technological uncertainty associated with the success of the R&D effort and market uncertainty about the stochastic revenue flow generated by the new product. Our model departs from most R&D models by assuming that the firm’s knowledge accumulation has an impact on the R&D process, so the hazard rate of arrival of R&D success is no longer memoryless. Also, we assume a finite life span of the technologies that the product depends on. In this paper, we propose efficient finite difference schemes that solve the Hamilton–Jacobi–Bellman formulation of the resulting finite time R&D stochastic control models with an optimal control on R&D expenditure and an optimal stopping rule on the abandonment of R&D effort. The optimal strategies of R&D expenditure with varying sets of model parameters are analyzed. In particular, we observe that R&D expenditure decreases with a firm’s knowledge stock and may even drop to zero when the accumulation level is sufficiently high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信