{"title":"具有变分消息传递推理的跟踪应用的图形随机模型","authors":"Felix Trusheim, A. Condurache, A. Mertins","doi":"10.1109/IPTA.2016.7820985","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graphical stochastic models for tracking applications with variational message passing inference\",\"authors\":\"Felix Trusheim, A. Condurache, A. Mertins\",\"doi\":\"10.1109/IPTA.2016.7820985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.\",\"PeriodicalId\":123429,\"journal\":{\"name\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2016.7820985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphical stochastic models for tracking applications with variational message passing inference
In this paper we present a novel, highly-adoptable, state-estimation filter based on the framework of graphical stochastical models and variational message passing inference. We evaluate our method on both real and simulated data for tracking applications. Our experimental results show that the proposed approach offers qualitative and computational advantages over established filter methods in practical situations, where the noise within a process is not simply a Gaussian noise, but rather described by a more complex distribution.