基于多项式混沌展开的锂离子电池随机模型

S. Orcioni, M. Conti
{"title":"基于多项式混沌展开的锂离子电池随机模型","authors":"S. Orcioni, M. Conti","doi":"10.1109/ICCEP.2019.8890170","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery pack performance and longevity can be severely affected by cell-to-cell variations. Statistical modeling is an important tool for optimization of performance and safety of battery packs. In this work a statistical model of Lithium-ion battery cell, based on Polynomial Chaos Expansion is developed. Performance are compare with Monte Carlo simulations.","PeriodicalId":277718,"journal":{"name":"2019 International Conference on Clean Electrical Power (ICCEP)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic model of Lithium-ion Batteries based on Polynomial Chaos Expansion\",\"authors\":\"S. Orcioni, M. Conti\",\"doi\":\"10.1109/ICCEP.2019.8890170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion battery pack performance and longevity can be severely affected by cell-to-cell variations. Statistical modeling is an important tool for optimization of performance and safety of battery packs. In this work a statistical model of Lithium-ion battery cell, based on Polynomial Chaos Expansion is developed. Performance are compare with Monte Carlo simulations.\",\"PeriodicalId\":277718,\"journal\":{\"name\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Clean Electrical Power (ICCEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEP.2019.8890170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2019.8890170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池组的性能和寿命会受到电池间差异的严重影响。统计建模是优化电池组性能和安全性的重要工具。本文建立了基于多项式混沌展开的锂离子电池电芯统计模型。并与蒙特卡罗模拟进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic model of Lithium-ion Batteries based on Polynomial Chaos Expansion
Lithium-ion battery pack performance and longevity can be severely affected by cell-to-cell variations. Statistical modeling is an important tool for optimization of performance and safety of battery packs. In this work a statistical model of Lithium-ion battery cell, based on Polynomial Chaos Expansion is developed. Performance are compare with Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信