概念定位的一种信息检索方法

Andrian Marcus, A. Sergeyev, V. Rajlich, Jonathan I. Maletic
{"title":"概念定位的一种信息检索方法","authors":"Andrian Marcus, A. Sergeyev, V. Rajlich, Jonathan I. Maletic","doi":"10.1109/WCRE.2004.10","DOIUrl":null,"url":null,"abstract":"Concept location identifies parts of a software system that implement a specific concept that originates from the problem or the solution domain. Concept location is a very common software engineering activity that directly supports software maintenance and evolution tasks such as incremental change and reverse engineering. This work addresses the problem of concept location using an advanced information retrieval method, Latent Semantic Indexing (LSI). LSI is used to map concepts expressed in natural language by the programmer to the relevant parts of the source code. Results of a case study on NCSA Mosaic are presented and compared with previously published results of other static methods for concept location.","PeriodicalId":443491,"journal":{"name":"11th Working Conference on Reverse Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"520","resultStr":"{\"title\":\"An information retrieval approach to concept location in source code\",\"authors\":\"Andrian Marcus, A. Sergeyev, V. Rajlich, Jonathan I. Maletic\",\"doi\":\"10.1109/WCRE.2004.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept location identifies parts of a software system that implement a specific concept that originates from the problem or the solution domain. Concept location is a very common software engineering activity that directly supports software maintenance and evolution tasks such as incremental change and reverse engineering. This work addresses the problem of concept location using an advanced information retrieval method, Latent Semantic Indexing (LSI). LSI is used to map concepts expressed in natural language by the programmer to the relevant parts of the source code. Results of a case study on NCSA Mosaic are presented and compared with previously published results of other static methods for concept location.\",\"PeriodicalId\":443491,\"journal\":{\"name\":\"11th Working Conference on Reverse Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"520\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Working Conference on Reverse Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCRE.2004.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Working Conference on Reverse Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCRE.2004.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 520

摘要

概念位置标识软件系统中实现源自问题或解决方案域的特定概念的部分。概念定位是一种非常常见的软件工程活动,它直接支持软件维护和演进任务,例如增量变更和逆向工程。这项工作解决了使用先进的信息检索方法,潜在语义索引(LSI)的概念定位问题。大规模集成电路用于将程序员用自然语言表达的概念映射到源代码的相关部分。介绍了NCSA马赛克的实例研究结果,并与其他静态方法的概念定位结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An information retrieval approach to concept location in source code
Concept location identifies parts of a software system that implement a specific concept that originates from the problem or the solution domain. Concept location is a very common software engineering activity that directly supports software maintenance and evolution tasks such as incremental change and reverse engineering. This work addresses the problem of concept location using an advanced information retrieval method, Latent Semantic Indexing (LSI). LSI is used to map concepts expressed in natural language by the programmer to the relevant parts of the source code. Results of a case study on NCSA Mosaic are presented and compared with previously published results of other static methods for concept location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信