一种新的多类支持向量机投票算法用于网页分类

Pornpon Thamrongrat, L. Preechaveerakul, W. Wettayaprasit
{"title":"一种新的多类支持向量机投票算法用于网页分类","authors":"Pornpon Thamrongrat, L. Preechaveerakul, W. Wettayaprasit","doi":"10.1109/ICCSIT.2009.5234603","DOIUrl":null,"url":null,"abstract":"The increasing numbers of web pages on the cyber world result to the less effectiveness of document retrieval that matches the need of users. The classification of web pages is one of the solutions to solve this problem. This paper proposes VAMSVM_WPC model which is a novel voting algorithm for classifying the web pages, which uses a multi-class SVM method. First, feature is generated from text and title, and then reduces the number of features by two feature selection techniques. Use these two types of features to give input to multi-class SVM. Finally, on the output of SVM, a voting algorithm is used to determine the category of the web pages. Results on CMU benchmark dataset show that using text and title feature with 1vsAll_Voting Algorithm gives the highest F-measure value.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel Voting Algorithm of multi-class SVM for web page classification\",\"authors\":\"Pornpon Thamrongrat, L. Preechaveerakul, W. Wettayaprasit\",\"doi\":\"10.1109/ICCSIT.2009.5234603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing numbers of web pages on the cyber world result to the less effectiveness of document retrieval that matches the need of users. The classification of web pages is one of the solutions to solve this problem. This paper proposes VAMSVM_WPC model which is a novel voting algorithm for classifying the web pages, which uses a multi-class SVM method. First, feature is generated from text and title, and then reduces the number of features by two feature selection techniques. Use these two types of features to give input to multi-class SVM. Finally, on the output of SVM, a voting algorithm is used to determine the category of the web pages. Results on CMU benchmark dataset show that using text and title feature with 1vsAll_Voting Algorithm gives the highest F-measure value.\",\"PeriodicalId\":342396,\"journal\":{\"name\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIT.2009.5234603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着网络世界中网页数量的不断增加,满足用户需求的文档检索效率越来越低。网页分类是解决这一问题的方法之一。本文提出了一种基于多类支持向量机的网页分类投票算法——VAMSVM_WPC模型。首先从文本和标题中生成特征,然后通过两种特征选择技术减少特征的数量。利用这两类特征对多类支持向量机进行输入。最后,在支持向量机的输出上,使用投票算法来确定网页的类别。在CMU基准数据集上的结果表明,使用文本和标题特征与1vsAll_Voting算法可以获得最高的F-measure值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Voting Algorithm of multi-class SVM for web page classification
The increasing numbers of web pages on the cyber world result to the less effectiveness of document retrieval that matches the need of users. The classification of web pages is one of the solutions to solve this problem. This paper proposes VAMSVM_WPC model which is a novel voting algorithm for classifying the web pages, which uses a multi-class SVM method. First, feature is generated from text and title, and then reduces the number of features by two feature selection techniques. Use these two types of features to give input to multi-class SVM. Finally, on the output of SVM, a voting algorithm is used to determine the category of the web pages. Results on CMU benchmark dataset show that using text and title feature with 1vsAll_Voting Algorithm gives the highest F-measure value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信