一些随机多项式导数的根

A. Galligo
{"title":"一些随机多项式导数的根","authors":"A. Galligo","doi":"10.1145/2331684.2331703","DOIUrl":null,"url":null,"abstract":"Our observations show that the sets of real (respectively complex) roots of the derivatives of some classical families of random polynomials admit a rich variety of patterns looking like discretized curves. To bring out the shapes of the suggested curves, we introduce an original use of fractional derivatives. Then we present several conjectures and outline a strategy to explain the presented phenomena. This strategy is based on asymptotic geometric properties of the corresponding complex critical points sets.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Roots of the derivatives of some random polynomials\",\"authors\":\"A. Galligo\",\"doi\":\"10.1145/2331684.2331703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our observations show that the sets of real (respectively complex) roots of the derivatives of some classical families of random polynomials admit a rich variety of patterns looking like discretized curves. To bring out the shapes of the suggested curves, we introduce an original use of fractional derivatives. Then we present several conjectures and outline a strategy to explain the presented phenomena. This strategy is based on asymptotic geometric properties of the corresponding complex critical points sets.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2331684.2331703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2331684.2331703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们的观察表明,一些经典的随机多项式族的导数的实数(分别是复数)根的集合具有丰富多样的模式,看起来像离散曲线。为了阐明所建议的曲线的形状,我们引入了分数阶导数的一种原始用法。然后,我们提出了几个猜想,并概述了一个策略来解释所呈现的现象。该策略基于相应复临界点集的渐近几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roots of the derivatives of some random polynomials
Our observations show that the sets of real (respectively complex) roots of the derivatives of some classical families of random polynomials admit a rich variety of patterns looking like discretized curves. To bring out the shapes of the suggested curves, we introduce an original use of fractional derivatives. Then we present several conjectures and outline a strategy to explain the presented phenomena. This strategy is based on asymptotic geometric properties of the corresponding complex critical points sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信