Visual-ISAM:利用改进SALKU模型的基于知识图的软件故障分析与评估可视化方法

Canwei Shi, Ling-lin Gong, Qi Shao, Qi Yao, Zhiyu Duan
{"title":"Visual-ISAM:利用改进SALKU模型的基于知识图的软件故障分析与评估可视化方法","authors":"Canwei Shi, Ling-lin Gong, Qi Shao, Qi Yao, Zhiyu Duan","doi":"10.1109/QRS-C57518.2022.00047","DOIUrl":null,"url":null,"abstract":"Software faults constantly appear during software development and evolution. The information on various platforms for bug knowledge recording, such as Stack Overflow, is mostly stored in weak entity relational database missing linkable relationships, which results in negative impacts on knowledge reuse. To enrich the relationships between entities and construct a software fault knowledge graph, we improve the SALKU model by considering the direction of prediction results between a pair of knowledge units, and utilize it to predict the class of linkable knowledge units. Experiment results show the improved model increases the ratio of knowledge unit pairs with equivalent link prediction results from 90.2% to 100% based on the premise of ensuring precision, recall, and F1-score. Eventually, we visualize the data from Stack Overflow in the knowledge graph based on the extracted relationships.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-ISAM: A Visualization Method for Software Failure Analysis and Evaluation based on Knowledge Graph Utilizing Improved SALKU Model\",\"authors\":\"Canwei Shi, Ling-lin Gong, Qi Shao, Qi Yao, Zhiyu Duan\",\"doi\":\"10.1109/QRS-C57518.2022.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software faults constantly appear during software development and evolution. The information on various platforms for bug knowledge recording, such as Stack Overflow, is mostly stored in weak entity relational database missing linkable relationships, which results in negative impacts on knowledge reuse. To enrich the relationships between entities and construct a software fault knowledge graph, we improve the SALKU model by considering the direction of prediction results between a pair of knowledge units, and utilize it to predict the class of linkable knowledge units. Experiment results show the improved model increases the ratio of knowledge unit pairs with equivalent link prediction results from 90.2% to 100% based on the premise of ensuring precision, recall, and F1-score. Eventually, we visualize the data from Stack Overflow in the knowledge graph based on the extracted relationships.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件故障在软件的开发和演化过程中不断出现。各种漏洞知识记录平台上的信息,如Stack Overflow,大多存储在弱实体关系数据库中,缺少可链接关系,这对知识重用造成了不利影响。为了丰富实体之间的关系,构建软件故障知识图,我们通过考虑一对知识单元之间预测结果的方向来改进SALKU模型,并利用它来预测可链接的知识单元的类别。实验结果表明,改进后的模型在保证准确率、召回率和f1分数的前提下,将具有等效链接预测结果的知识单元对的比例从90.2%提高到100%。最后,基于提取的关系,我们将Stack Overflow的数据可视化到知识图中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-ISAM: A Visualization Method for Software Failure Analysis and Evaluation based on Knowledge Graph Utilizing Improved SALKU Model
Software faults constantly appear during software development and evolution. The information on various platforms for bug knowledge recording, such as Stack Overflow, is mostly stored in weak entity relational database missing linkable relationships, which results in negative impacts on knowledge reuse. To enrich the relationships between entities and construct a software fault knowledge graph, we improve the SALKU model by considering the direction of prediction results between a pair of knowledge units, and utilize it to predict the class of linkable knowledge units. Experiment results show the improved model increases the ratio of knowledge unit pairs with equivalent link prediction results from 90.2% to 100% based on the premise of ensuring precision, recall, and F1-score. Eventually, we visualize the data from Stack Overflow in the knowledge graph based on the extracted relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信