纤维蛋白原分子聚集的机制:纤维蛋白稳定因子的影响。

Biomedical science Pub Date : 1991-01-01
M A Rozenfel'd, M V Vasil'eva
{"title":"纤维蛋白原分子聚集的机制:纤维蛋白稳定因子的影响。","authors":"M A Rozenfel'd,&nbsp;M V Vasil'eva","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The physicochemical mechanism of aggregation of fibrinogen has been investigated in the presence and absence of fibrin-stabilising factor (factor XIIIa). Data from elastic and inelastic light-scattering and viscometry show that molecules of fibrinogen undergo a spontaneous modification of their carboxyl terminals and bind 'end to end' into flexible polymer chains. On attaining a critical length, the single-filament polymers twist into a coil and aggregate to form branched molecules in which the segments are packed sufficiently densely to resemble strongly hydrated globular particles. The formation, under the influence of factor XIIIa, of epsilon/gamma-glutamyl-lysine covalent bonds produces only insignificant changes in the spatial organisation of the fibrinogen aggregates. Covalent dimerisation of the gamma-chains restricts the structural flexibility of the polymers, but linking of the alpha-chains provides progressive compaction of the structure with increase in molecular weight. Electrophoresis of reconstituted samples shows that the coil-shaped chains of fibrinogen oligomers prevent the complete enzymatic linking of the gamma-chains. The results of this work suggest that the accelerated assembly of multimolecular aggregates, seen in the presence of factor XIIIa, may be explained by the stabilisation of intermediate complexes of fibrinogen, which makes the spontaneous transition from a stable native state to the activated state irreversible.</p>","PeriodicalId":77499,"journal":{"name":"Biomedical science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of aggregation of fibrinogen molecules: the influence of fibrin-stabilising factor.\",\"authors\":\"M A Rozenfel'd,&nbsp;M V Vasil'eva\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The physicochemical mechanism of aggregation of fibrinogen has been investigated in the presence and absence of fibrin-stabilising factor (factor XIIIa). Data from elastic and inelastic light-scattering and viscometry show that molecules of fibrinogen undergo a spontaneous modification of their carboxyl terminals and bind 'end to end' into flexible polymer chains. On attaining a critical length, the single-filament polymers twist into a coil and aggregate to form branched molecules in which the segments are packed sufficiently densely to resemble strongly hydrated globular particles. The formation, under the influence of factor XIIIa, of epsilon/gamma-glutamyl-lysine covalent bonds produces only insignificant changes in the spatial organisation of the fibrinogen aggregates. Covalent dimerisation of the gamma-chains restricts the structural flexibility of the polymers, but linking of the alpha-chains provides progressive compaction of the structure with increase in molecular weight. Electrophoresis of reconstituted samples shows that the coil-shaped chains of fibrinogen oligomers prevent the complete enzymatic linking of the gamma-chains. The results of this work suggest that the accelerated assembly of multimolecular aggregates, seen in the presence of factor XIIIa, may be explained by the stabilisation of intermediate complexes of fibrinogen, which makes the spontaneous transition from a stable native state to the activated state irreversible.</p>\",\"PeriodicalId\":77499,\"journal\":{\"name\":\"Biomedical science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了纤维蛋白稳定因子(因子XIIIa)存在和不存在时纤维蛋白原聚集的物理化学机制。弹性和非弹性光散射和粘度测量的数据表明,纤维蛋白原分子经历了羧基末端的自发修饰,并“端对端”结合成柔性聚合物链。在达到临界长度时,单丝聚合物扭曲成线圈并聚集形成分支分子,其中的片段被足够密集地包裹起来,类似于强水合球状颗粒。在因子XIIIa的影响下,epsilon/ γ -谷氨酰赖氨酸共价键的形成仅对纤维蛋白原聚集体的空间组织产生微不足道的变化。γ链的共价二聚化限制了聚合物的结构灵活性,但α链的连接随着分子量的增加提供了结构的渐进压实。重组样品的电泳显示,纤维蛋白原低聚物的线圈状链阻止了γ链的完全酶联。这项工作的结果表明,在因子XIIIa的存在下,多分子聚集体的加速组装可以用纤维蛋白原中间复合物的稳定来解释,这使得从稳定的天然状态到激活状态的自发转变是不可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of aggregation of fibrinogen molecules: the influence of fibrin-stabilising factor.

The physicochemical mechanism of aggregation of fibrinogen has been investigated in the presence and absence of fibrin-stabilising factor (factor XIIIa). Data from elastic and inelastic light-scattering and viscometry show that molecules of fibrinogen undergo a spontaneous modification of their carboxyl terminals and bind 'end to end' into flexible polymer chains. On attaining a critical length, the single-filament polymers twist into a coil and aggregate to form branched molecules in which the segments are packed sufficiently densely to resemble strongly hydrated globular particles. The formation, under the influence of factor XIIIa, of epsilon/gamma-glutamyl-lysine covalent bonds produces only insignificant changes in the spatial organisation of the fibrinogen aggregates. Covalent dimerisation of the gamma-chains restricts the structural flexibility of the polymers, but linking of the alpha-chains provides progressive compaction of the structure with increase in molecular weight. Electrophoresis of reconstituted samples shows that the coil-shaped chains of fibrinogen oligomers prevent the complete enzymatic linking of the gamma-chains. The results of this work suggest that the accelerated assembly of multimolecular aggregates, seen in the presence of factor XIIIa, may be explained by the stabilisation of intermediate complexes of fibrinogen, which makes the spontaneous transition from a stable native state to the activated state irreversible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信