基于加性角边缘软最大损失的人再识别新判别特征学习

Jie Su, Xiaohai He, L. Qing, Yanmei Yu, Shengyu Xu, Yonghong Peng
{"title":"基于加性角边缘软最大损失的人再识别新判别特征学习","authors":"Jie Su, Xiaohai He, L. Qing, Yanmei Yu, Shengyu Xu, Yonghong Peng","doi":"10.1109/UCET.2019.8881838","DOIUrl":null,"url":null,"abstract":"In this paper, a new end-to-end framework is proposed for person re-identification (re-ID) by combining metric learning and classification. In this new framework, the Additive Angular Margin Softmax is used which imposes an additive angular margin constraint to the target logit on hypersphere manifold. This is aimed to improve the similarity of the intra-class features and the dissimilarity of the inter-class features simultaneously. Compard with the three popular used softmax-based-loss methods, the experiments show that the proposed approach has achieved improved performance on Market1501 and DukeMTMC-reID datasets for person re-ID.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Discriminative Feature Learning for Person Re-Identification Using Additive Angular Margin Softmax Loss\",\"authors\":\"Jie Su, Xiaohai He, L. Qing, Yanmei Yu, Shengyu Xu, Yonghong Peng\",\"doi\":\"10.1109/UCET.2019.8881838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new end-to-end framework is proposed for person re-identification (re-ID) by combining metric learning and classification. In this new framework, the Additive Angular Margin Softmax is used which imposes an additive angular margin constraint to the target logit on hypersphere manifold. This is aimed to improve the similarity of the intra-class features and the dissimilarity of the inter-class features simultaneously. Compard with the three popular used softmax-based-loss methods, the experiments show that the proposed approach has achieved improved performance on Market1501 and DukeMTMC-reID datasets for person re-ID.\",\"PeriodicalId\":169373,\"journal\":{\"name\":\"2019 UK/ China Emerging Technologies (UCET)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 UK/ China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET.2019.8881838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将度量学习与分类相结合,提出了一种新的端到端人物再识别框架。在该框架中,采用了可加性角余量软最大值,对超球流形上的目标对数施加可加性角余量约束。这是为了同时提高类内特征的相似性和类间特征的不相似性。实验结果表明,与常用的三种基于softmax的损失方法相比,该方法在Market1501和DukeMTMC-reID数据集上取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Discriminative Feature Learning for Person Re-Identification Using Additive Angular Margin Softmax Loss
In this paper, a new end-to-end framework is proposed for person re-identification (re-ID) by combining metric learning and classification. In this new framework, the Additive Angular Margin Softmax is used which imposes an additive angular margin constraint to the target logit on hypersphere manifold. This is aimed to improve the similarity of the intra-class features and the dissimilarity of the inter-class features simultaneously. Compard with the three popular used softmax-based-loss methods, the experiments show that the proposed approach has achieved improved performance on Market1501 and DukeMTMC-reID datasets for person re-ID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信