{"title":"铁电弛豫三元聚合物:性能和潜在应用","authors":"Franvois Bauer, Qiming Zhang, E. Fousson","doi":"10.1109/ISE.2005.1612332","DOIUrl":null,"url":null,"abstract":"Ferroelectric materials are intrinsically multifunctional and have found a broad range of applications. A new class of semicrystalline terpolymers comprising vinylidene fluoride (VDF), trifluoroefhylene (TrFE), and 1,1-chlorofluoroefhylene (CFE), were prepared at the Institut Franco-Allemand de Recherches in Saint-Louis (ISL) via a suspension polymerization process. Relevant studies and results show that this class of electroactive polymers offers unique properties in comparison with other ferroelectric polymers. The terpolymer exhibits high electrostrictive strain (>7%) with relatively high modulus (>0.3GPa). It has been also observed that the large electrostrictive strain is nearly constant in the temperature range from 20degC to 80degC. These terpolymers are strong candidates for new devices. Example of the motion and of the performance of terpolymer in a unimorph configuration is presented. The high room temperature relative dielectric constant (~50), which is the highest among all the known polymers, high induced polarization (~0.05 C/m2), and high electric breakdown field (>400 MV/m) lead to very high volume efficiency for the electric energy storage operated under high voltage (~10 J/cm3).","PeriodicalId":441219,"journal":{"name":"2006 15th ieee international symposium on the applications of ferroelectrics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ferroelectric Relaxor Terpolymers: Properties and Potential Applications\",\"authors\":\"Franvois Bauer, Qiming Zhang, E. Fousson\",\"doi\":\"10.1109/ISE.2005.1612332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferroelectric materials are intrinsically multifunctional and have found a broad range of applications. A new class of semicrystalline terpolymers comprising vinylidene fluoride (VDF), trifluoroefhylene (TrFE), and 1,1-chlorofluoroefhylene (CFE), were prepared at the Institut Franco-Allemand de Recherches in Saint-Louis (ISL) via a suspension polymerization process. Relevant studies and results show that this class of electroactive polymers offers unique properties in comparison with other ferroelectric polymers. The terpolymer exhibits high electrostrictive strain (>7%) with relatively high modulus (>0.3GPa). It has been also observed that the large electrostrictive strain is nearly constant in the temperature range from 20degC to 80degC. These terpolymers are strong candidates for new devices. Example of the motion and of the performance of terpolymer in a unimorph configuration is presented. The high room temperature relative dielectric constant (~50), which is the highest among all the known polymers, high induced polarization (~0.05 C/m2), and high electric breakdown field (>400 MV/m) lead to very high volume efficiency for the electric energy storage operated under high voltage (~10 J/cm3).\",\"PeriodicalId\":441219,\"journal\":{\"name\":\"2006 15th ieee international symposium on the applications of ferroelectrics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 15th ieee international symposium on the applications of ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISE.2005.1612332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 15th ieee international symposium on the applications of ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISE.2005.1612332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ferroelectric Relaxor Terpolymers: Properties and Potential Applications
Ferroelectric materials are intrinsically multifunctional and have found a broad range of applications. A new class of semicrystalline terpolymers comprising vinylidene fluoride (VDF), trifluoroefhylene (TrFE), and 1,1-chlorofluoroefhylene (CFE), were prepared at the Institut Franco-Allemand de Recherches in Saint-Louis (ISL) via a suspension polymerization process. Relevant studies and results show that this class of electroactive polymers offers unique properties in comparison with other ferroelectric polymers. The terpolymer exhibits high electrostrictive strain (>7%) with relatively high modulus (>0.3GPa). It has been also observed that the large electrostrictive strain is nearly constant in the temperature range from 20degC to 80degC. These terpolymers are strong candidates for new devices. Example of the motion and of the performance of terpolymer in a unimorph configuration is presented. The high room temperature relative dielectric constant (~50), which is the highest among all the known polymers, high induced polarization (~0.05 C/m2), and high electric breakdown field (>400 MV/m) lead to very high volume efficiency for the electric energy storage operated under high voltage (~10 J/cm3).