时间序列数据处理与识别的类硅光子hopfield电光循环网络

G. Cong, N. Yamamoto, R. Kou, Y. Maegami, M. Ohno, K. Yamada
{"title":"时间序列数据处理与识别的类硅光子hopfield电光循环网络","authors":"G. Cong, N. Yamamoto, R. Kou, Y. Maegami, M. Ohno, K. Yamada","doi":"10.23919/OFC49934.2023.10117456","DOIUrl":null,"url":null,"abstract":"We propose and experimentally demonstrate a Hopfield-like electro-optical recurrent network based on silicon photonic circuits for processing time-series data to extract feature vectors just by one-time sampling, which can offer robust and simple waveform recognition. © 2022 The Author(s)","PeriodicalId":355445,"journal":{"name":"2023 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon Photonic Hopfield-like Electro-optical Recurrent Network for Time-series Data Processing and Recognition\",\"authors\":\"G. Cong, N. Yamamoto, R. Kou, Y. Maegami, M. Ohno, K. Yamada\",\"doi\":\"10.23919/OFC49934.2023.10117456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and experimentally demonstrate a Hopfield-like electro-optical recurrent network based on silicon photonic circuits for processing time-series data to extract feature vectors just by one-time sampling, which can offer robust and simple waveform recognition. © 2022 The Author(s)\",\"PeriodicalId\":355445,\"journal\":{\"name\":\"2023 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OFC49934.2023.10117456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OFC49934.2023.10117456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出并实验证明了一种基于硅光子电路的类似hopfield的电光循环网络,用于处理时间序列数据,只需一次采样即可提取特征向量,该网络可以提供鲁棒性和简单的波形识别。©2022作者
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon Photonic Hopfield-like Electro-optical Recurrent Network for Time-series Data Processing and Recognition
We propose and experimentally demonstrate a Hopfield-like electro-optical recurrent network based on silicon photonic circuits for processing time-series data to extract feature vectors just by one-time sampling, which can offer robust and simple waveform recognition. © 2022 The Author(s)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信