基于遗传算法的快速特征选择:一种滤波方法

P. Lanzi
{"title":"基于遗传算法的快速特征选择:一种滤波方法","authors":"P. Lanzi","doi":"10.1109/ICEC.1997.592369","DOIUrl":null,"url":null,"abstract":"The goal of the feature selection process is, given a dataset described by n attributes (features), to find the minimum number m of relevant attributes which describe the data as well as the original set of attributes do. Genetic algorithms have been used to implement feature selection algorithms. Previous algorithms presented in the literature used the predictive accuracy of a specific learning algorithm as the fitness function to maximize over the space of possible feature subsets. Such an approach to feature selection requires a large amount of CPU time to reach a good solution on large datasets. This paper presents a genetic algorithm for feature selection which improves previous results presented in the literature for genetic-based feature selection. It is independent of a specific learning algorithm and requires less CPU time to reach a relevant subset of features. Reported experiments show that the proposed algorithm is at least ten times faster than a standard genetic algorithm for feature selection without a loss of predictive accuracy when a learning algorithm is applied to reduced data.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Fast feature selection with genetic algorithms: a filter approach\",\"authors\":\"P. Lanzi\",\"doi\":\"10.1109/ICEC.1997.592369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the feature selection process is, given a dataset described by n attributes (features), to find the minimum number m of relevant attributes which describe the data as well as the original set of attributes do. Genetic algorithms have been used to implement feature selection algorithms. Previous algorithms presented in the literature used the predictive accuracy of a specific learning algorithm as the fitness function to maximize over the space of possible feature subsets. Such an approach to feature selection requires a large amount of CPU time to reach a good solution on large datasets. This paper presents a genetic algorithm for feature selection which improves previous results presented in the literature for genetic-based feature selection. It is independent of a specific learning algorithm and requires less CPU time to reach a relevant subset of features. Reported experiments show that the proposed algorithm is at least ten times faster than a standard genetic algorithm for feature selection without a loss of predictive accuracy when a learning algorithm is applied to reduced data.\",\"PeriodicalId\":167852,\"journal\":{\"name\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1997.592369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

特征选择过程的目标是,给定一个由n个属性(特征)描述的数据集,找到与原始属性集一样描述数据的最小m个相关属性。遗传算法已经被用来实现特征选择算法。先前文献中提出的算法使用特定学习算法的预测精度作为适应度函数,在可能的特征子集空间上最大化。这种特征选择方法需要大量的CPU时间才能在大型数据集上得到一个好的解决方案。本文提出了一种用于特征选择的遗传算法,改进了以往文献中基于遗传的特征选择的结果。它独立于特定的学习算法,并且需要更少的CPU时间来达到相关的特征子集。已有的实验表明,当将学习算法应用于约简数据时,所提出的算法在不损失预测准确性的情况下,比标准遗传算法在特征选择方面至少快十倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast feature selection with genetic algorithms: a filter approach
The goal of the feature selection process is, given a dataset described by n attributes (features), to find the minimum number m of relevant attributes which describe the data as well as the original set of attributes do. Genetic algorithms have been used to implement feature selection algorithms. Previous algorithms presented in the literature used the predictive accuracy of a specific learning algorithm as the fitness function to maximize over the space of possible feature subsets. Such an approach to feature selection requires a large amount of CPU time to reach a good solution on large datasets. This paper presents a genetic algorithm for feature selection which improves previous results presented in the literature for genetic-based feature selection. It is independent of a specific learning algorithm and requires less CPU time to reach a relevant subset of features. Reported experiments show that the proposed algorithm is at least ten times faster than a standard genetic algorithm for feature selection without a loss of predictive accuracy when a learning algorithm is applied to reduced data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信