基于时空方向分析的交通视频分类

K. Derpanis, Richard P. Wildes
{"title":"基于时空方向分析的交通视频分类","authors":"K. Derpanis, Richard P. Wildes","doi":"10.1109/WACV.2011.5711560","DOIUrl":null,"url":null,"abstract":"This paper describes a system for classifying traffic congestion videos based on their observed visual dynamics. Central to the proposed system is treating traffic flow identification as an instance of dynamic texture classification. More specifically, a recent discriminative model of dynamic textures is adapted for the special case of traffic flows. This approach avoids the need for segmentation, tracking and motion estimation that typify extant approaches. Classification is based on matching distributions (or histograms) of spacetime orientation structure. Empirical evaluation on a publicly available data set shows high classification performance and robustness to typical environmental conditions (e.g., variable lighting).","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Classification of traffic video based on a spatiotemporal orientation analysis\",\"authors\":\"K. Derpanis, Richard P. Wildes\",\"doi\":\"10.1109/WACV.2011.5711560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a system for classifying traffic congestion videos based on their observed visual dynamics. Central to the proposed system is treating traffic flow identification as an instance of dynamic texture classification. More specifically, a recent discriminative model of dynamic textures is adapted for the special case of traffic flows. This approach avoids the need for segmentation, tracking and motion estimation that typify extant approaches. Classification is based on matching distributions (or histograms) of spacetime orientation structure. Empirical evaluation on a publicly available data set shows high classification performance and robustness to typical environmental conditions (e.g., variable lighting).\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文描述了一种基于观察到的视觉动态对交通拥堵视频进行分类的系统。该系统的核心是将交通流识别作为动态纹理分类的一个实例。更具体地说,最近的动态纹理判别模型适用于交通流的特殊情况。这种方法避免了对分割、跟踪和运动估计的需要,这些都是现有方法的特点。分类是基于时空方向结构的匹配分布(或直方图)。对公开可用数据集的经验评估显示出高分类性能和对典型环境条件(例如,可变照明)的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of traffic video based on a spatiotemporal orientation analysis
This paper describes a system for classifying traffic congestion videos based on their observed visual dynamics. Central to the proposed system is treating traffic flow identification as an instance of dynamic texture classification. More specifically, a recent discriminative model of dynamic textures is adapted for the special case of traffic flows. This approach avoids the need for segmentation, tracking and motion estimation that typify extant approaches. Classification is based on matching distributions (or histograms) of spacetime orientation structure. Empirical evaluation on a publicly available data set shows high classification performance and robustness to typical environmental conditions (e.g., variable lighting).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信