Rui Zhu, Zhengqin Li, J. Matai, F. Porikli, Manmohan Chandraker
{"title":"IRISformer:用于室内场景单图像反向渲染的密集视觉变压器","authors":"Rui Zhu, Zhengqin Li, J. Matai, F. Porikli, Manmohan Chandraker","doi":"10.1109/CVPR52688.2022.00284","DOIUrl":null,"url":null,"abstract":"Indoor scenes exhibit significant appearance variations due to myriad interactions between arbitrarily diverse object shapes, spatially-changing materials, and complex lighting. Shadows, highlights, and inter-reflections caused by visible and invisible light sources require reasoning about long-range interactions for inverse rendering, which seeks to recover the components of image formation, namely, shape, material, and lighting. In this work, our intuition is that the long-range attention learned by transformer architectures is ideally suited to solve longstanding challenges in single-image inverse rendering. We demonstrate with a specific instantiation of a dense vision transformer, IRISformer, that excels at both single-task and multi-task reasoning required for inverse rendering. Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene. Our extensive evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image, with greater photorealism than prior works. Code and data are publicly released.11https://github.com/ViLab-UCSD/IRISformer","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes\",\"authors\":\"Rui Zhu, Zhengqin Li, J. Matai, F. Porikli, Manmohan Chandraker\",\"doi\":\"10.1109/CVPR52688.2022.00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor scenes exhibit significant appearance variations due to myriad interactions between arbitrarily diverse object shapes, spatially-changing materials, and complex lighting. Shadows, highlights, and inter-reflections caused by visible and invisible light sources require reasoning about long-range interactions for inverse rendering, which seeks to recover the components of image formation, namely, shape, material, and lighting. In this work, our intuition is that the long-range attention learned by transformer architectures is ideally suited to solve longstanding challenges in single-image inverse rendering. We demonstrate with a specific instantiation of a dense vision transformer, IRISformer, that excels at both single-task and multi-task reasoning required for inverse rendering. Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene. Our extensive evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image, with greater photorealism than prior works. Code and data are publicly released.11https://github.com/ViLab-UCSD/IRISformer\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.00284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes
Indoor scenes exhibit significant appearance variations due to myriad interactions between arbitrarily diverse object shapes, spatially-changing materials, and complex lighting. Shadows, highlights, and inter-reflections caused by visible and invisible light sources require reasoning about long-range interactions for inverse rendering, which seeks to recover the components of image formation, namely, shape, material, and lighting. In this work, our intuition is that the long-range attention learned by transformer architectures is ideally suited to solve longstanding challenges in single-image inverse rendering. We demonstrate with a specific instantiation of a dense vision transformer, IRISformer, that excels at both single-task and multi-task reasoning required for inverse rendering. Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene. Our extensive evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image, with greater photorealism than prior works. Code and data are publicly released.11https://github.com/ViLab-UCSD/IRISformer