基于模糊评价反馈的两足机器人强化学习

Changjiu Zhou, Qingchun Meng
{"title":"基于模糊评价反馈的两足机器人强化学习","authors":"Changjiu Zhou, Qingchun Meng","doi":"10.1109/ROBOT.2000.845328","DOIUrl":null,"url":null,"abstract":"Proposes a fuzzy reinforcement learning algorithm for biped gait synthesis. It is based on a modified GARIC (generalized approximate reasoning for intelligent control) architecture that can accept fuzzy evaluative feedback rather than a numerical one. The proposed gait synthesizer forms the initial gait from intuitive balancing knowledge, and it is then trained by the fuzzy reinforcement learning algorithm that uses a fuzzy critical signal to evaluate the degree of success for the biped dynamic walking by means of the zero moment point. The performance and applicability of the proposed method are illustrated through biped simulation.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Reinforcement learning with fuzzy evaluative feedback for a biped robot\",\"authors\":\"Changjiu Zhou, Qingchun Meng\",\"doi\":\"10.1109/ROBOT.2000.845328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a fuzzy reinforcement learning algorithm for biped gait synthesis. It is based on a modified GARIC (generalized approximate reasoning for intelligent control) architecture that can accept fuzzy evaluative feedback rather than a numerical one. The proposed gait synthesizer forms the initial gait from intuitive balancing knowledge, and it is then trained by the fuzzy reinforcement learning algorithm that uses a fuzzy critical signal to evaluate the degree of success for the biped dynamic walking by means of the zero moment point. The performance and applicability of the proposed method are illustrated through biped simulation.\",\"PeriodicalId\":286422,\"journal\":{\"name\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2000.845328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.845328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

提出了一种用于两足步态综合的模糊强化学习算法。它是基于一种改进的GARIC(广义近似推理智能控制)体系结构,可以接受模糊评估反馈而不是数字反馈。提出的步态合成器由直观的平衡知识形成初始步态,然后通过模糊强化学习算法对其进行训练,该算法利用模糊临界信号通过零力矩点来评价两足动物动态行走的成功程度。通过双足仿真,验证了该方法的性能和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning with fuzzy evaluative feedback for a biped robot
Proposes a fuzzy reinforcement learning algorithm for biped gait synthesis. It is based on a modified GARIC (generalized approximate reasoning for intelligent control) architecture that can accept fuzzy evaluative feedback rather than a numerical one. The proposed gait synthesizer forms the initial gait from intuitive balancing knowledge, and it is then trained by the fuzzy reinforcement learning algorithm that uses a fuzzy critical signal to evaluate the degree of success for the biped dynamic walking by means of the zero moment point. The performance and applicability of the proposed method are illustrated through biped simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信