{"title":"奇维一般格哈密顿的TKNN公式","authors":"H. Fukaya, T. Onogi, S. Yamaguchi, Xi Wu","doi":"10.22323/1.363.0052","DOIUrl":null,"url":null,"abstract":"Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-known relation between the topological number given by the Chern character of the Berry curvature and the Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the fermion with general U(1) gauge interactions including non-minimal couplings by an explicit calculation. A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number, which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over the temporal momenta.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TKNN formula for general lattice Hamiltonian in odd dimensions\",\"authors\":\"H. Fukaya, T. Onogi, S. Yamaguchi, Xi Wu\",\"doi\":\"10.22323/1.363.0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-known relation between the topological number given by the Chern character of the Berry curvature and the Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the fermion with general U(1) gauge interactions including non-minimal couplings by an explicit calculation. A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number, which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over the temporal momenta.\",\"PeriodicalId\":147987,\"journal\":{\"name\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.363.0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TKNN formula for general lattice Hamiltonian in odd dimensions
Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-known relation between the topological number given by the Chern character of the Berry curvature and the Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the fermion with general U(1) gauge interactions including non-minimal couplings by an explicit calculation. A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number, which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over the temporal momenta.